Strategic Inattention, Inflation Dynamics and the Non-Neutrality of Money*

Hassan Afrouzi†
Columbia University

First Draft: Nov 17, 2016
This Draft: Mar 5, 2019

Abstract

In countries with low and stable inflation, price setters’ inflation expectations are highly dispersed and disconnected from aggregate inflation. Moreover, this disconnect is stronger for firms with fewer competitors. This paper poses a new dynamic general equilibrium model of rational inattention with oligopolistic pricing that explains these facts. Under high micro-level strategic complementarities (1) the model implied Phillips curve relates inflation mainly to firms’ expectations about their competitors’ beliefs and (2) firms with fewer competitors pay more attention to their competitors’ beliefs and less attention to aggregates. To provide evidence for this channel, I measure micro-level strategic complementarity for a representative sample of firms in New Zealand and document that the average firm faces a strategic complementarity of 0.8, and that it is decreasing with the firms’ number of competitors. An exploratory calibration shows that imperfectly competitive firms’ strategic inattention to aggregates significantly propagates monetary non-neutrality: it increases the impact response of output to an expansionary monetary policy shock by 25%. It also decreases the impact response of inflation to such a shock by 47% and increases its half-life by 31%.

JEL classification: D21; D43; D91; E31; E32; E71

Key Words: inflation dynamics, inflation expectations, monetary non-neutrality, oligopolistic competition, rational inattention.

*This paper is a revised version of my job market paper and the first chapter of my PhD dissertation at UT Austin. I would like to thank my advisors Olivier Coibion, Saroj Bhattarai and Yuriy Gorodnichenko for their guidance and support. I also benefited from discussions with V. Bhaskar, Nicholas Buchholz, Mark Dean, Andrew Glover, Guido Lorenzoni, Filip Matejka, Eugenio Miravete, Ricardo Reis, Christopher Sims, Max Stinchcombe, Mirko Wiederholt, Emily Weisburst, Michael Woodford and numerous seminar participants.

†Address: 1025 International Affairs Building, 420 West 118th Street, New York NY 10027. Email: hassan.afrouzi@columbia.edu.
“[T]he precise manner in which expectations influence inflation deserves further study ... Most importantly, we need to know more about the manner in which inflation expectations are formed.”

Janet Yellen (2016)

1 Introduction

Since the seminal work of Friedman (1968) and Phelps (1967), macroeconomists have emphasized the importance of expectations for the evolution of prices in the economy. Almost every modern monetary model relates aggregate price changes to price setters’ expectations about aggregate inflation.¹ This insight has profoundly influenced monetary policy: central bankers treat anchored expectations not only as a policy objective for controlling inflation, but also as a potential instrument since the onset of the zero lower bound after the Great Recession.

However, empirical evidence on price setters’ expectations about aggregate inflation are at odds with this theoretical prediction. In countries with low and stable inflation, managers of price setting firms make large errors in perceiving and forecasting inflation and revise their expectations immensely in short periods of time.² While the theory predicts that such high and volatile expectations of aggregate inflation should either pass through to inflation or be accompanied by a deep contemporaneous recession, neither was the case for these countries.

How can inflation be so stable in these countries while price setters’ expectations of it are so volatile? Either the survey data are inaccurate in reflecting expectations, or our baseline models are too simplified to capture the channels that would explain this disconnect. With respect to the latter, I show that such patterns emerge within a new dynamic model of oligopolistic competition with endogenous information acquisition.

The key and the novel insight rises from the interaction of oligopolistic pricing and endogenous information acquisition. Oligopolistic firms set their prices relative to those of their few competitors rather than aggregate prices. Accordingly, upon choosing their information structure they find it optimal to learn more about the beliefs of their competitors at the expense of acquiring less information about aggregate variables. The disconnect between prices and aggregate inflation expectations then arises endogenously; since firms

¹The timing of these expectations are model-specific. For instance, New Keynesian sticky price models relate inflation to expectations of future aggregate inflation, while imperfect information models, pioneered by Lucas (1972), relate it to past expectations of current inflation.

²For instance, Kumar, Afrouzi, Coibion and Gorodnichenko (2015) document that managers in New Zealand make average errors of 2 to 3 percentage points in perceiving current as well as forecasting future inflation, and revise their forecasts by an average of 3.4 percentage points after only three months. Similarly, Bryan, Meyer and Parker (2015) document that managers in the U.S. also report much higher as well as more dispersed expectations of overall price changes in the economy.
mainly focus on their competitors’ beliefs, when an aggregate shock occurs they partially attribute it to a **mistake** on the part of their competitors, but change their prices anyway as they find it optimal to respond to such mistakes.\(^3\)

The first main contribution of this paper is to build a model that captures this mechanism. The main insight of the model is related to that in Hellwig and Venkateswaran (2009) where firms mistakenly attribute aggregate shocks to firm-specific ones, with the distinction that in my model firm-specific shocks are micro-founded as endogenous mistakes of oligopolistic firms in perceiving the aggregate shocks. This micro-foundation is necessary for characterizing the interaction between competition and information acquisition: I show that firms with fewer competitors make larger and more correlated mistakes; i.e. firm-specific shocks have higher variance and are correlated across firms. Moreover, this correlation goes away and the variance of these errors reaches its lower-bound in the monopolistic competition limit, where the number of firms in every sector goes to infinity. This endows the model with a unique testable implication: that firms with fewer competitors should, on average, make larger mistakes about aggregates, and be more uncertain about them. I use survey data on firms’ expectations from New Zealand to test this prediction and show that it holds in the data.

Firms that compete with only a few others do not optimize over their price relative to an aggregate price index but rather relative to the prices of their direct rivals, a feature which has important implications for monetary policy when information acquisition is costly but optimal. Every firm realizes that their rationally inattentive competitors will make mistakes in perceiving the shocks in the economy. Since mistakes of others end up affecting their prices and accordingly the profits of their competitors, even in an economy with a single aggregate shock, firms find themselves facing an endogenous trade-off: how much to track the shock itself versus the mistakes of others. Such firms find it optimal to coordinate their mistakes with their competitors by paying attention to their beliefs. Given that attention is costly, such coordination comes at the cost of knowing less about the fundamental shocks in the economy. The incentive to learn about others’ beliefs is characterized in Hellwig and Veldkamp (2009) in a setting with a continuum of agents. The main departure here is to micro-found the strength of the trade-off through endogenous mistakes of the players and understand how finiteness of the number of players affect the strength of these incentives. In that sense, the setup here is closely related to the one in Denti (2018) where players can acquire correlated information in a flexible way.

The main macroeconomic contribution of this paper is to show that in the presence of this

\(^3\) I define what I precisely mean by “mistakes” in the main body of the paper. In short, a mistake is the part of a firm’s price which is unpredictable by the fundamental shocks of the economy.
trade-off and under high micro-level strategic complementarities, a micro-founded Phillips curve relates inflation primarily to price setters’ expectations about their competitors’ price changes rather than their expectations about aggregate inflation. This can therefore account for how, in countries like New Zealand and the U.S., aggregate inflation can remain low and stable even when price setters’ expectations of aggregate inflation are not. The latter simply play little role in price setting decisions when rationally inattentive price setters have strategic motives.

Another main contribution of this paper is to characterize the dynamic consequences of firms’ strategic inattention to aggregate shocks, and to document the implications of these incentives in propagation and amplification of monetary policy shocks in a dynamic general equilibrium model. Within economies where firms face more direct competitors at the micro-level, they have lower incentives in tracking the mistakes of their rivals because it is more unlikely for a larger group of competitors to make a mistake on average. Consequently, firms facing a larger number of direct competitors allocate a higher amount of their attention to learning the monetary policy shocks. Therefore, it takes a shorter time for these firms to fully realize the magnitude of a monetary policy shock and adjust their prices accordingly, which in turn translates to a lower persistence in the real effects of a monetary policy shock. In a quantitative illustration informed by micro-level survey data, I find that strategic inattention due to imperfect competition motives significantly amplifies monetary non-neutrality: it lowers the impact response of inflation to a one percent expansionary monetary policy shock by 47 percent and increases its half-life by 31 percent. Similarly, it also increases the impact response of output to such a shock by 25 percent, and increases its half-life slightly by 5 percent.

Moreover, by deriving the Phillips curve within the rational inattention model, I also relate the shadow cost of processing information to the degree of information rigidity in noisy and sticky information models such as Woodford (2003a) and Mankiw and Reis (2002). This allows me to map the shadow cost of information acquisition in my model to the estimates of information rigidities from survey data, pioneered by Coibion and Gorodnichenko (2012, 2015) (CG). Utilizing this relationship, I calibrate this parameter by running CG regressions using simulated data generated by the model and inverting the implied estimates. I find that this calibrated value implies a much lower degree of information rigidity than commonly needed in noisy and sticky information models. Price setters in my model ultimately are very good at processing information, even better than professional forecasters in the U.S. according to CG, but spend a portion of that attention to track the mistakes of their competitors. Hence, in spite of being well-informed about their own optimal prices, price setters’ macroeconomic beliefs endogenously become akin to those of agents facing large information
rigidities for macroeconomic variables.

The three assumptions that support this result are (1) few direct competitors for every firm, (2) costly information acquisition, and (3) large micro-level strategic complementarities. I use firm-level survey data to provide evidence for these assumptions, and also test the implications of the model. When asked how many competitors they face in their main product market, firms in New Zealand report only between 5 to 8 rivals on average, with 35% of firms responding that they face fewer than 4 competitors, and only 5% reporting that they have more than 15 competitors.

The costly nature of information acquisition is also well founded in the data. For instance, comparing the U.S. and Argentina, Cavallo, Cruces and Perez-Truglia (2017) show that individuals in lower inflation contexts have significantly weaker priors about the inflation rate, a finding that supports the rational inattention hypothesis. Furthermore, Afrouzi, Bayat, Ghaderi and Madanizadeh (2019) conduct a survey of firms’ expectations in Iran – a country which has dealt with high and volatile inflation for more than three decades – and show that firms’ expectations in that country follow inflation very closely, despite the lack of transparency on the part of the Iranian central bank.\(^4\)

Finally, to provide evidence for high strategic complementarities, I implement a question in the survey of firms’ expectations in New Zealand that allows me to identify this parameter. I find that the average firm puts a weight of 0.8 on the average price of its competitors. The model predicts that such high strategic complementarity should lead to a substantial disconnect between prices and aggregate inflation expectations which is consistent with the motivating evidence for this paper. A recent study from Uruguay provides evidence for the opposite case: following the methodology of this paper, Frache and Lluberas (2018) implement the same survey question in Uruguay, a country with an average inflation of 8 percent. They show that the average firm faces a much lower strategic complementarity of 0.28 and they find no evidence for a disconnect between prices and aggregate inflation expectations.

The theoretical approach of this paper is closely related to the literature on endogenous information acquisition in beauty contests.\(^5\) This paper also builds on the rational inattention literature and the seminal work of Sims (2003, 2006). Maćkowiak and Wiederholt (2009, 2015) show how rational inattention on the part of firms and households affect the dynamics of inflation and output in the economy. While this literature has assumed that firms’ signals are independent conditional on the fundamental shocks, I mainly depart from

\(^4\)Evidence from professional forecasters are also consistent with rational inattention motives. For instance, Gaglianone, Giacomini, Issler and Skreta (2019) show that professional forecasters are more likely to have better forecasts when the benefit from an accurate forecast is higher.

\(^5\)For a comprehensive recent survey of this literature see Angeletos and Lian (2016).
this literature by micro-founding the endogenous strategic interactions of agents in tracking mistakes of one another and show that in presence of limited competition firms choose signals that incorporate correlated errors. These correlated errors create a wedge between aggregate inflation expectations and average expectations of firms from their own competitors’ price changes and drive the main results of this paper both in terms of a new Phillips curve and also larger real effects for monetary policy shocks. The dynamic model of this paper also relates to a very recent literature on characterizing dynamic incentives in information acquisition within macroeconomic models. Mackowiak, Matejka and Wiederholt (2018) show that rational inattention leads to a forward looking behavior in information acquisition of agents. Furthermore, by formalizing the dynamic incentives of agents in acquiring information, Afrouzi and Yang (2019) show that agents’ optimal information acquisition strategy in dynamics is based on motives of information smoothing over time. This paper departs from this literature by focusing on strategic incentives within a game theoretic setting rather than the dynamic incentives of a single agent.

The paper is organized as follows. Section 2 illustrates the nature of firms’ information acquisition incentives in a simplified static model and derives a set of testable predictions. Section 3 relates the predictions of the model to the firm-level survey data from New Zealand. Section 4 presents the dynamic general equilibrium model and Section 5 discusses the impulse responses of the calibrated model. Section 6 concludes. Moreover, all the technical derivations as well as the proofs of all the propositions and corollaries are included in Appendices A and B, for the static and dynamic models respectively.

2 A Static Model

The goal of this section is to endogenize informational choices of oligopolistic firms and illustrate the equilibrium relationship between aggregate price and the expectations of firms within a static model. The model presented here is a special case of the dynamic general equilibrium model that is specified in Section 4. While the general dynamic model has to be solved by using computational methods, the solution to the static case is in closed form, which provides insight for interpreting the results of the dynamic model.

Since the main purpose of this section is to provide intuition, I focus on the economics of the forces at work in the main text. All informal claims in this section are formalized in Appendix A, and the proofs for propositions are included in Appendix A.8.

6See, also, Steiner et al. (2017) who formalize how rational inattention models explain inertia and delay in decision making.
2.1 The Environment

There are a large number of sectors in the economy indexed by $j \in \{1, \ldots, J\}$, and within every sector there are K firms. Let index j,k denote firm k in sector j. K here represents the number of firms in a specific (sub)industry that directly compete with one another, and is potentially different than what traditional measures of competition would imply; while there may be a large number of firms that produce the same type of good in an economy – such as coffee shops brewing coffee for instance – each one of them does not necessarily compete directly with all the others.\(^7\) In fact, when asked how many direct competitors they face in their main product market, firms in New Zealand report an average of 5 to 8. Given this, I model the economy to be composed of a large number of these small groups.

Firms are price setters and their profits are affected by a normally distributed fundamental shock that I denote by $q \sim \mathcal{N}(0,1)$. For any realization of the fundamental, and a set of prices chosen by firms across the economy, $(q, p_{j,k})_{j,k \in J \times K}$, the losses of firm j,k in profits is given by the distance between their price and a convex combination of q and the average of their competitors’ prices;

$$L_{j,k}((q, p_{j,k})_{j,k \in J \times K}) = (p_{j,k} - (1 - \alpha)q - \alpha \frac{1}{K - 1} \sum_{l \neq k} p_{j,l})^2,$$

where $\alpha \in [0,1)$ denotes the degree of within industry strategic complementarity.\(^8\) Two assumptions in the specification of this environment are essential for the results that follow. The first is the existence of strategic complementarity within industries, and the second is the finiteness of the number of competitors within them.\(^9\) Given these, the objective is to understand, first, which expectations of firms matter for aggregate price dynamics, and second, how these expectations are formed.

To illustrate the importance of endogenizing information choices of firms in this environment, it is useful for us to briefly consider the case where information is exogenous. For an endowed information set for the economy, let $E^{j,k}[\cdot]$ be the expectation operator of firm j,k. Aggregating the best responses of firms in pricing, we get the following expression for the aggregate price:

$$p = (1 - \alpha)E^{j,k}[q] + \alpha E^{j,k}[p_{j,-k}], \quad (1)$$

\(^7\)One reason to such a claim is spatial restrictions. In the example of coffee shops, physical distance has to be an important factor.

\(^8\)Here the fundamental q, and prices, $(p_{j,k})_{j \in J, k \in K}$, can be interpreted as log-deviations from a steady state symmetric equilibrium, which allows us to normalize their mean to zero.

\(^9\)I micro-found these features in the dynamic model, where the quadratic loss is based on a second order approximation to the profit function of oligopolistic firms and α depends on the household’s demand for their goods.
where $E^{j,k}[q]$ is the average expectation across firms of the fundamental, and $E^{j,k}[p_{j,-k}]$ is their average expectation of their own competitors’ prices. While this equation resembles the usual result in beauty contest games, the key departure here is the assumption on finiteness of firms within industries.\footnote{See, for instance, \textcite{morris2002}; \textcite{angeletos2007} for a discussion of beauty contests with exogenous information sets, and the value of information within them.} The aggregate price no longer depends on the average expectation of the aggregate price across firms, but the average expectation of their own-industry prices. In fact, if α is large, as documented in the data in Section 3, it is mainly the latter that drives the aggregate price.

Therefore, in order to understand how prices are determined in the economy, one needs to understand how firms form their expectations of both the fundamental as well as the prices of their competitors.

2.2 The Information Choice Problem of the Firms

Firms make two choices. First, they choose an information structure subject to their finite amount of attention that informs them about the fundamental and the prices of their competitors. Second, they choose a pricing strategy that maps their information set to a price.

I model the information choice problem of the firms using rational inattention. The spirit of rational inattention is the richness of available information that it assumes for an economy. This in itself separates a rational inattention economy from one with an information structure in which agents either observe a set of exogenously imposed signals or choose their signals from a set that does not allow for sufficiently precise signals. In a rational inattention world, however, if an action takes place after the nature draws a random shock, then perfect information about that shock is available for the agents. For instance, if firms are setting their prices after a monetary policy shock has taken place, it is unreasonable to assume that they do not have access to its exact realization, which is also the primary building block of the full-information rational expectations hypothesis. What distinguishes rational inattention from full information rational expectations, however, is the recognition of the fact that availability of information is a different notion than its feasibility for the firms. The fact that perfect information is available about a monetary policy shock does not necessarily imply that firms would choose to have perfect information when attention is costly. Nonetheless, subject to this cost, firms behave optimally and choose their information set such that it maximizes their ex ante payoffs.

Therefore, a pure strategy for any firm j, k is to choose a signal $S_{j,k}$ from a set of available signals \mathcal{S}, and a pricing strategy that maps the realization of the signal into the firm’s price,
\(p_{j,k} : S_{j,k} \rightarrow \mathbb{R} \). While here I have taken it as given that firms choose only one signal, it is shown in Appendix A.4 that this assumption is without a loss in generality if \(S \) is rich enough.\(^{11}\) I show in Appendix A.3 that in any equilibrium with Gaussian signals, pricing strategies are linear in firms’ signals. I take this result as given here and focus on linear strategies, where firm \(j,k \) chooses \(M_{j,k} \in \mathbb{R} \), such that \(p_{j,k} = M_{j,k}S_{j,k} \). Given a strategy profile for all other firms in the economy, \((S_{l,m}, M_{l,m})_{(l,m)\neq(j,k)}\), firm \(j,k \)’s rational inattention problem is

\[
\min_{(S_{j,k} \in S, p_{j,k} : S_{j,k} \rightarrow \mathbb{R})} \mathbb{E}[(p_{j,k} - (1 - \alpha)q - \alpha \frac{1}{K-1} \sum_{l \neq k} M_{j,l}S_{j,l})^2 | S_{j,k}] \\
\text{s.t.} \quad \mathcal{I}(S_{j,k}; (q, M_{l,m}S_{l,m})_{(l,m)\neq(j,k)}) \leq \kappa
\]

(2)

where \(\mathcal{I}(S_{j,k}; (q, M_{l,m}S_{l,m})_{(l,m)\neq(j,k)}) \) measures the amount of information that the firm’s signal reveals about the fundamental and the prices of other firms in the economy.\(^{12}\) This constraint simply requires that a firm cannot know more than \(\kappa \) bits about the fundamental \(q \) and the signals that others have chosen in \(S \). Although I restrict my analysis to Shannon’s mutual information function in this paper, the main results hold for a more generic class of information cost functions. In Afrouzi and Yang (2019) we extensively argue the properties of the cost function that drive firms to only observe one signal, and through that signal pay strictly positive attention to multiple shocks. The following defines an equilibrium for this economy.

Definition 1. A pure strategy equilibrium for this economy is a strategy profile \((S_{j,k} \in S, M_{j,k} \in \mathbb{R})_{(j,k)\in J \times K} \) such that \(\forall j,k \in J \times K, (S_{l,m}, M_{l,m})_{(l,m)\neq(j,k)} \) solves \(j,k \)’s problem as stated in Equation (2). It is shown in Appendix A that the equilibrium is unique in the joint distribution of prices for firms.

The uniqueness of the joint distribution of prices in the equilibrium allows us to abstract from the underlying signals and directly focus on how firms’ prices are related to one another. Let \(p_{j,k} \) be the price that firm \(j,k \) charges in the equilibrium. The finite attention of the firm implies that this price cannot be fully revealing of the fundamental, because if it were then it would imply that the firm had infinitely precise information about the fundamental, which is not feasible given the attention constraint.

\(^{11}\)See Section A.2 for a formal definition of a rich information structure. My definition of a rich information set corresponds to the concept of flexibility in information acquisition in Denti (2018).

\(^{12}\)\(\mathcal{I}(;;) \) is Shannon’s mutual information function. In this paper, I focus on Gaussian random variables, in which case \(\mathcal{I}(X; Y) = \frac{1}{2} \log_2(\det(var(X))) - \frac{1}{2} \log_2(\det(var(X|Y))) \). The Gaussian nature of the information structure is self-consistent in the equilibrium. When a firms’ opponents choose Gaussian signals, under the quadratic loss it is also optimal for the firm to choose a Gaussian signals. See Cover and Thomas (2012) for optimality of Gaussian signals under quadratic objectives with Gaussian fundamentals.
Definition 2. A mistake is a part of a firm’s price that is unpredictable by the fundamentals of the economy.

Thus, any firm’s price can be decomposed into a the part that is correlated with the fundamental and the part that is orthogonal to it:

\[p_{j,k} = \delta q + v_{j,k}, \quad v_{j,k} \perp q, \quad \delta \in \mathbb{R}. \]

The vector \((v_{j,k})_{j,k \in J \times K}\), therefore, contains the mistakes of all firms in pricing, with their joint distribution being endogenously determined in the equilibrium. I define these orthogonal elements mistakes because in a world where firms have infinite capacity to process information, all firms perfectly learn the fundamental and set their prices exactly equal to \(q\).

It is important to mention that these mistakes need not to be independent across firms. In fact, by endogenizing the information choices of firms, one of the objectives here is to understand how the mistakes of different firms relate to one another in the equilibrium, or intuitively how much managers of competing firms learn about the mistakes of their rivals and incorporate them in their own prices.

Moreover, the coefficient \(\delta\), which determines the degree to which prices covary with the fundamental of the economy, is also an equilibrium object. Our goal is to understand how \(\delta\) and the joint distribution of mistakes rely on the underlying parameters of the model; \(\alpha, K\) and \(\kappa\).

Definition 3. The amount of attention that a firm pays to a random variable is the mutual information between their set of signals and that random variable. Moreover, for any two random variables \(X\) and \(Y\), we say a firm knows more about \(X\) than \(Y\) if it pays more attention to \(X\) than \(Y\).

In the static model, the amount of attention is directly linked to the absolute value of the correlation between a firm’s signal and the random variable to which the firm is paying attention.\(^\text{13}\) Appendix A.7 shows that when others play a strategy in which \(\frac{1}{K-1} \sum_{l \neq k} p_{j,l} = \delta q + v_{j,-k}\), the attention problem of firm \(j,k\) reduces to choosing the correlation of their signal with the fundamental and the mistakes of others:

\[
\begin{align*}
\max_{\rho_q \geq 0, \rho_v \geq 0} \quad & \rho_q + \frac{\alpha \sigma_v}{1 - \alpha (1 - \delta)} \rho_v \\
\text{s.t.} \quad & \rho_q^2 + \rho_v^2 \leq \lambda \equiv 1 - 2^{-2k}.
\end{align*}
\]

\(^{13}\)For two normal random variables \(X\) and \(Y\), let \(I(X,Y)\) denote Shannon’s mutual information between the two. Then \(I(X,Y) = -\frac{1}{2} \log_2(1 - \rho_{X,Y}^2)\) where \(\rho_{X,Y}\) is the correlation between \(X\) and \(Y\). Notice that \(I(X,Y)\) is increasing in \(\rho_{X,Y}^2\).
Here $\sigma_v \equiv \text{var}(v_{j,k})^{\frac{1}{2}}$ is the standard deviation of the average mistakes of j,k’s competitors, ρ_q is the correlation of the firm’s signal with the fundamental, and ρ_v is its correlation with the average mistake of its competitors. Moreover, $\lambda \equiv 1 - 2^{-2\kappa}$ captures the total amount of attention that the firm has at its disposal.14 The information processing constraint reduces such that the square of the two correlations should sum up to an amount less than λ.

The following proposition states the properties of the equilibrium. The closed form solutions and derivations are included in Appendix A. I focus here on the forces that shape this equilibrium.

Proposition 1. In equilibrium,

1. Firms pay attention not only to the fundamental, but also to the mistakes of their competitors: $\rho_v^* > 0$.

2. A firms’ knowledge of the fundamental increases in the number of their competitors and decreases in the degree of strategic complementarity:

$$\frac{\partial}{\partial K} \rho_q^* > 0, \quad \frac{\partial}{\partial \alpha} \rho_q^* < 0.$$

3. Firms do not pay attention to mistakes of those in other industries: $\forall (j,k), (l,m), \text{ if } j \neq l, p_{j,k} \perp p_{l,m} | q$.

The independence of mistakes from the fundamental implies an endogenously arisen trade-off for firms in allocating their attention. Higher attention to competitors’ mistakes has to be compensated by lower attention to the fundamental but this in turn reduces a firm’s losses by creating coordination between them and their rivals.

The presence of σ_v in the objective of the firm unveils an important force in determining the incentive of a firm in paying attention to others’ mistakes. The firm cares not about the mistake of any single competitor, but about the average mistake that its rivals make all together. Moreover, these average mistakes will always have strictly positive standard deviation due to the finiteness of competitors. It is only when K goes to infinity that the law of large numbers kicks in and $\sigma_v = 0$ in the equilibrium.15 Therefore, the more the mistakes of a firm’s competitors “wash out”, the less the firm is worried about them.

14 $\lambda = 0$ corresponds to $\kappa = 0$ and $\lambda \to 1$ corresponds to $\kappa \to \infty$.

15 This is an equilibrium outcome as σ_v is determined by the endogenous choices of firms. To see how this emerges in the equilibrium, notice that if $K \to \infty$, a firm has no incentive to pay attention to others’ mistakes if they are independent as the law of large numbers would imply $\sigma_v = 0$. Since incentives are symmetric, in the equilibrium all firms prefer to have independent mistakes, implying that $\sigma_v = 0$.

11
Another important aspect of the Proposition 1 is how strategic complementarity influences the choices of these firms. \(\alpha \) is the underlying parameter that relates the payoff of a firm to mistakes of its competitors. When \(\alpha \) is zero, the firm pays no penalty for charging a price that is farther away from the prices of its competitors, implying that the firm’s payoff depends only on how close its price is to the fundamental itself. Since tracking the mistakes of others is costly in terms of learning the fundamental, when \(\alpha = 0 \), all firms focus solely on the fundamental and learn about it as much as their finite attention allows them. As \(\alpha \) gets larger, however, the payoffs of firms depend more on the mistakes that others make and accordingly the firm finds it more in their interest to track those mistakes. This illustrates the importance of micro-founding these strategic complementarities, which is one of the main objectives of the model in Section 4.

Appendix A shows that in equilibrium

\[
\delta = \frac{\lambda - \alpha \lambda}{1 - \alpha \lambda}.
\]

This implies that the degree to which prices covary with the fundamental in an industry depends on strategic complementarity and the capacity of processing information while it is independent of the number of firms in the industry, a feature of the static model that goes away in dynamics where strategic complementaries are micro-founded.

2.3 Equilibrium Prices and Expectations

Having characterized the equilibrium, we now have the necessary tools to answer our motivating question on the relationship between equilibrium prices and expectations. Recall that in the equilibrium the average price is given by

\[
p = (1 - \alpha)E^{j,k}[q] + \alpha E^{j,k}[p_{j,-k}].
\]

Here, the goal is to understand how the aggregate price co-moves with the average expectations of firms from the objects of the model. The next proposition derives the necessary results for the argument that follows.

Proposition 2. In equilibrium, the aggregate price co-moves more with the average expectations from own-industry prices than average expectations of the aggregate price itself, meaning that

\[
cov(p, E^{j,k}[p_{j,-k}]) > cov(p, E^{j,k}[p]).
\]

Moreover, the two converge to each other as \(K \to \infty \).
Therefore, what firms know about the prices of their competitors matters more for the
determination of the aggregate price than what they know about the aggregate price itself.
This result also holds in the dynamic model in the sense that inflation is driven more by
the expectations of industry price changes, than the expectations over inflation itself. The
following Corollary shows that the realized price is also closer to the average own-industry
price expectations than the average expectation of the aggregate price.

Corollary 1. In equilibrium, the realized price is closer in absolute value to the average
expectations from own-industry prices than the average expectation of the aggregate price itself.

\[
|p - \mathbb{E}^{j,k}[p_{j,-k}]| < |p - \mathbb{E}^{j,k}[p]|
\]

The intuition behind these results relies solely on the incentives of firms in paying attention
to the mistakes of their competitors. In equilibrium, the signals that firms observe are
more informative of their own industry prices than the aggregate economy:

\[
S_{j,k} = \underbrace{\text{covaries with aggregate price}}_{p} + u_j + e_{j,k},
\]

where \(u_j \perp p \) is the common mistake in industry \(j \) and \(e_{j,k} \) is the independent part of firm
\(j, k \)'s mistake. The fact that \(\text{var}(u_j) \neq 0 \) by Proposition 1 implies that the firm would be
more confident in predicting their own industry price changes than the aggregate price, and
the two would become the same only if there was no coordination within industries, which
happens when \(K \to \infty \).

This result, along with its counterpart in the dynamic model, shows how stable infla-
tion can be an equilibrium outcome even when agents’ expectations of that inflation are
ill-informed. What firms need to know in terms of figuring out their optimal price is a com-
bination of the fundamental \(q \) and their own industry price changes. While the aggregate
price will be correlated with both of these objects, it does not by itself play an important role
in firms’ profits so they do not need to directly learn about it. Thus, the question becomes
how well-informed firms are about their industry price changes versus the fundamental.

Proposition 3. In the equilibrium, if strategic complementarity is high enough, a firm knows
more about the average price of its competitors than about the fundamental and the aggregate
price. A sufficient condition for this result is if \(\alpha \lambda \geq \frac{1}{2} \).\(^{16}\)

\(^{16}\)The necessary and sufficient condition in this sense has a complicated expression that is derived in the
proof of the Proposition. It is shown that this result could hold even in occasions when \(\alpha \lambda < \frac{1}{2} \) but \(K \) is
small enough. For the purposes of this section, however, we only focus on this sufficient condition.
To see the reason, notice that the average price of a firm’s competitors incorporates their average mistake:

\[p_{j,-k} = \delta q + v_{j,-k}. \]

Hence, if a firm only paid attention to the fundamental, it would then know more about the fundamental than the prices of its competitors since their information would be orthogonal to the mistakes of others. It is only when the firm pays enough attention to \(v_{j,-k} \) that it would know more about \(p_{j,-k} \) than \(q \).

3 Model Predictions and Relation to the Data

The goal of this section is twofold: first, to provide evidence for the main assumptions of the model and second, to test the main predictions of the model against data. To do so, I use a unique quantitative survey of firms’ expectations from New Zealand, which is comprehensively discussed in Kumar, Afrouzi, Coibion and Gorodnichenko (2015) and Coibion, Gorodnichenko and Kumar (2018), to assess the predictions of the model in the previous section. The survey was conducted in multiple waves among a random sample of firms in New Zealand with broad sectoral coverage. The new empirical contribution in this paper relative to the previous papers that have used this data is that I implement and utilize a new question in the survey to back-out the degree of strategic complementarity for firms, and establish a relationship between competition and strategic complementarity.

3.1 Number of Competitors and Strategic Complementarity

Two assumptions are crucial for the results of the model in the previous section: the finiteness of a firm’s competitors and the existence of micro-level strategic complementarities. Two questions in the survey directly measure these for every firm within the sample and quantify these assumptions. The first question asks firms

“How many direct competitors does the firm face in its main product line?”

The average firm in the sample reports that they face eight competitors, as documented in Table (1), with 35% of firms reporting that they face four or fewer competitors. A breakdown of firms’ answers from different industries shows that this average is fairly uniform across them with construction being a slightly less competitive sector than others.

A second question was implemented in the survey to measure the degree of micro-level strategic complementarity. This has been a challenging parameter to estimate in the literature due to major endogeneity concerns: it is rarely possible to find exogenous variations
in the prices of a firm's competitors that are not correlated with aggregates or the firm's own costs. Moreover, taking into account the informational frictions that firms face makes this concern even more challenging to alleviate; if this model is correct, one needs exogenous variations in firms' expectations of their competitors' prices. In other words, measuring the response of a firm to a change in their competitors' prices is simply not enough as the firm might interpret the change in these prices as a signal about their own costs. To get around this issue, I relied on the following hypothetical question to measure the degree of strategic complementarity:

"Suppose that you get news that the general level of prices went up by 10% in the economy:

a. By what percentage do you think your competitors would raise their prices on average?

b. By what percentage would your firm raise its price on average?

c. By what percentage would your firm raise its price if your competitors did not change their price at all in response to this news?""

The question proposes a change in the firms' environment that is coming through aggregate variables, which affects both their costs and those of their competitors. The question then measures three different quantities that allows me to disentangle the degree of strategic complementarity:

\[
p_{j,k} = (1 - \alpha) E^{j,k}[q] + \alpha E^{j,k}[p_{j,-k}] + \text{answer to b.} - \text{answer to c.} + \text{answer to a.}
\]

The average α implied by the responses of firms to this question is 0.82 and uniform across different industries, as reported in Table (2). An interesting observation here is that the degree of strategic complementarity is decreasing in the number of a firm's competitors. This is consistent with a simple two layer CES model and will inform the modeling choice in the next section. These responses indicate a high degree of strategic complementarity.\footnote{The usual calibration for the across industry strategic complementarity in the U.S. is 0.9. See, for instance, Mankiw and Reis (2002); Woodford (2003b).}

Moreover, this high degree of strategic complementarity is consistent with the large forecast errors of firms about aggregate inflation, as the model predicts these firms would pay a large amount of attention to what their competitors are doing (Proposition 3). Based on the analysis in this paper, Frache and Lluberas (2018) ask the same question from firms in Uruguay. They find a much lower degree of strategic complementarity within that economy.
and consistent with the predictions of the model here they also document much smaller forecast errors of aggregate inflation among those firms.

3.2 Knowledge about Industry versus Aggregate Inflation

One of the main predictions of the model is that in the presence of coordination at the micro-level, firms are more aware of their industry price changes than the aggregate price.

In the fourth wave of the survey, conducted in the last quarter of 2014, firms were asked to provide their nowcasts of both industry and aggregate yearly inflation. Figure (1) shows the distribution of firms’ nowcasts of these two objects. While the average nowcast for aggregate inflation, 4.3%, is very high and far from the actual inflation of 0.8%, the average nowcast of firms from their industry prices, 0.95%, is very close to this realized inflation. This observation directly parallels with the result in Corollary 1 that shows under imperfect competition prices are closer to average expectations of firms from their own industry prices than their average expectation of the aggregate price. Also, Table (3) reports the size of firms’ nowcast errors in perceiving the two.\(^{18}\) The average absolute nowcast error from industry inflation is 1.2 percentage points, a magnitude that is considerably lower than the average absolute nowcast error about aggregate inflation, 3.1 percentage points. This evidence is consistent with the prediction of Proposition 3 which states that in presence of high strategic complementarities firms are relatively more aware of their industry price changes than the aggregate ones. In addition, Figure (2) shows that on top of this striking difference in the averages, the distributions of these nowcast errors are skewed in opposite directions: for nearly two-thirds of firms, their nowcast error of the aggregate inflation is larger than the mean error, while the reverse is true in the case of industry inflation.

From the perspective of the standard models of inflation dynamics which relate the rate of inflation to firms’ expectations about aggregate inflation, these high expectations of aggregate inflation seem very puzzling. Despite these large inflation expectations among firms, which are consistently higher than the 2% target of the RBNZ in all waves of the survey, coupled with the fact that there were no significant changes in the output gap of New Zealand in this period, yearly inflation in New Zealand has been even lower than the target. Since the year 2012, yearly inflation has been averaging around 1%, with a high of 1.6% in the second quarter of 2014 and a low of 0.1% in the third quarter of 2015.

Finally, in the sixth wave of the survey, firms were asked to assign probabilities to different outcomes regarding industry and aggregate yearly inflation.\(^{19}\) Table (4) reports the standard

\(^{18}\)Nowcast errors for industry inflation are measured as the distance between firms’ nowcast and the realized inflation in their industry.

\(^{19}\)Firms were asked the following two questions: “Please assign probabilities (from 0-100) to the following
deviation of managers’ reported distribution for both of these objects, which I interpret as their subjective uncertainty. Firms are relatively less uncertain about their industry inflation in the following year than the aggregate one. This directly relates to the prediction of the model in Proposition 3 that in the presence of high industry level strategic complementarity firms should know more about their industry price changes than aggregate inflation.

3.3 Uncertainty about Inflation versus Number of Competitors

Proposition 1 predicts that knowledge about the aggregate price should be increasing in the number of a firm’s competitors. This is a unique feature of the oligopolistic rational inattention model and is a testable prediction. To test this prediction, I run the following regression.

\[\sigma^\pi_i = \beta_0 + \beta_1 K_i + \epsilon_i, \]

where \(\sigma^\pi_i \) is firm \(i \)’s subjective uncertainty about the aggregate inflation, and \(K_i \) is the number of competitors that they report in their main product market. The model’s prediction translates to the null hypothesis that \(\beta_1 < 0 \). Panel (a) of Table (5) reports the result of this regression, and shows that this is indeed the case. This result is also robust to including firm controls such as firms’ age and employment as well as industry fixed effects. The significance of this coefficient in explaining firms’ uncertainty about aggregates is an observation that is not reconcilable neither with full information rational expectation models nor any other macroeconomic model of information rigidity prior to this paper, and indicates the importance of strategic incentives in how much firms pay attention to aggregate variables in the economy.

For comparison, I also run a similar regression of firms’ uncertainty about their industry prices on their number of competitors:

\[\sigma^{\pi_i} = \beta_3 + \beta_4 K_i + \bar{\epsilon}_i, \]

where now \(\sigma^{\pi_i} \) is the standard deviation of firm \(i \)’s reported distribution for their own industry. Panel (b) of Table (5) shows these two are also negatively correlated, yet with a smaller magnitude. This is also consistent with the model. As the number of a firm’s competitors increase, firms become more certain about their price changes: in larger industries mistakes wash out more effectively due to the law of large numbers, making the average price change more predictable. The smaller magnitude of the coefficient on the number of competitors, however, carries an important insight from the model. The same force that makes the prices ranges of overall price changes in the economy/your industry over the next 12 months for New Zealand.” The bins to which firms assigned probabilities were identical in both questions.
of a firms’ competitors more predictable, also discourages the firm from paying attention to their competitors’ mistakes. To see this in the model, recall that

\[p_{j,-k} = \delta q + v_{j,-k}. \]

As the number of a firm’s competitors goes up, their knowledge of the fundamental, \(q \), also goes up, which is the result in Panel (a). However, this only happens because firms shift their attention from \(v_{j,-k} \) to \(q \), meaning that the decrease in uncertainty about the fundamental is accompanied by an increase in uncertainty about the mistakes of others. Hence, the decrease in uncertainty about the fundamental with the number of competitors should be lower in magnitude for industry prices than aggregate ones.

Panel (c) of Table (5) aims at capturing this effect by regressing the difference between firms’ uncertainty about their industry relative to the aggregate inflation on the number of their competitors. This difference is positively correlated with the number of firms’ competitors, consistent with the prediction that firms become relatively more uncertain about their industry price changes once the decline in uncertainty about the aggregates is extracted.

4 A Micro-founded Dynamic Model

This section extends the simple static model of Section 2 to a dynamic general equilibrium model, and micro-founds the loss function and within industry strategic complementarities that were taken as given in the static model. The model is then used to quantitatively analyze the effects of firms’ strategic incentives in propagation of monetary policy shocks to aggregate output and inflation. All the derivations as well as the proofs for the propositions regarding the dynamic model are included in Appendix B.

4.1 Households

There is a large variety of goods produced in the economy. In particular, the economy consists of a large number of industries, \(j \in J \equiv \{1, \ldots, J\} \); and each industry consists of \(K \geq 2 \) firms that produce weakly substitutable goods. The household takes the nominal prices of these goods as given and forms a demand over the product of each firm in the economy. In particular, the aggregate time \(t \) consumption of the household is

\[C_t = \prod_{j \in J} C_{j,t}^{-1}, \]

where \(C_{j,t} \equiv \Phi(C_{j,1,t}, \ldots, C_{j,K,t}) \) is the composite demand of household for the goods
produced in industry j, and $\Phi(\cdot) : \mathbb{R}^K \rightarrow \mathbb{R}$ is a continuously differentiable aggregation function that is homogeneous of degree 1, symmetric across its arguments, and such that $\Phi(1, \ldots, 1) = K$. Equation (3) denotes that the aggregate consumption of the household is Cobb-Douglas in the composite goods of industries. Also, household’s preferences over goods within industries, captured by the form of $\Phi(\cdot)$, is central in determining the degree of within-industry strategic complementarity.\footnote{A specific form for $\Phi(\cdot)$, which I will use to provide intuition in this section, is a CES aggregator with elasticity of substitution $\eta > 1$,}

\[
\Phi(C_{j,1,t}, \ldots, C_{j,K,t}) = K \left(K^{-1} \sum_{k \in K} C_{j,k,t}^{\eta} \right)^{\frac{1}{\eta}} .
\]

The generality assumption on the form of function $\Phi(\cdot)$ is mainly due to calibration purposes, as the CES aggregator is too restrictive in matching the level of strategic complementarity observed in the data. This generality assumption is not new to the literature of oligopolistic pricing in macroeconomic models. See, for instance, Rotemberg and Woodford (1992).

Since the main purpose of this paper is to study the effects of rational inattention under imperfect competition among firms, I assume that households are fully informed about prices and wages.\footnote{While this might not be a very realistic assumption, it is the standard approach in the literature as a natural first step in separating the implications of rational inattention for households versus firms.}

The representative household’s problem is

\[
\max_{((C_{j,k,t})_{(j,k) \in J \times K}, C_t, L_t, B_t)} \mathbb{E}_t^f \sum_{t=0}^{\infty} \beta^t \left[\log(C_t) - \phi L_t \right] \\
\text{s.t. } \sum_{j,k} P_{j,k,t} C_{j,k,t} + B_t \leq W_t L_t + (1 + i_{t-1}) B_{t-1} + \sum_{j,k} \Pi_{j,k,t} - T \\
C_t = \prod_{j \in J} \Phi(C_{j,1,t}, \ldots, C_{j,K,t})^{J^{-1}}.
\]

where $\mathbb{E}_t^f[\cdot]$ is the full information rational expectations operator at time t, L_t is the labor supply of the household, B_t is their demand for nominal bonds, W_t is the nominal wage, i_t is the net nominal interest rate, $\Pi_{j,k,t}$ denotes the profit of firm j, k at time t, and T is a constant lump sum tax that is used by the government to finance a hiring subsidy for firms in order to eliminate any long-run inefficiencies of imperfect competition.

I show in Appendix B that household’s optimal behavior implies the following demand function for the product of firm j, k:

\[
C_{j,k,t} = P_tC_tD(P_{j,k,t}; P_{j,-k,t})
\]
where P_t is the price of the aggregate consumption bundle C_t, $P_{j,k,t}$ is firm j,k’s price at t, and $P_{j,-k,t}$ is the vector of other firms’ prices in sector j. Moreover, the function $D(\cdot;\cdot)$ is homogeneous of degree -1.\(^{22}\)

Finally, let $Q_t \equiv P_t C_t$ be the aggregate nominal demand for the economy. Then, the household’s intertemporal Euler and labor supply equations are given by:

$$W_t = \phi Q_t, \quad 1 = \beta (1 + i_t) E_t^f \left[\frac{Q_t}{Q_{t+1}} \right].$$

The log-utility implies that the intertemporal Euler equation simply relates the level of nominal interest rate to the expected growth of the aggregate demand. This creates a natural duality between formulating monetary policy either in terms of the nominal interest rates, or specifying a law of motion for the aggregate demand, which is a well-known and frequently used result in the literature.\(^{23}\)

4.2 Firms

Firms take wages and their demand from the household side as given and at each period set their prices based on their information set at that time; while committing to produce the realized level of demand that their prices induce. Since my main objective is to examine the real effects of monetary policy through endogenous information acquisition of these firms, I abstract from other sources of monetary non-neutrality, and in particular assume that prices are perfectly flexible.\(^{24}\) After setting their prices, firms then hire labor from a competitive labor market and produce with a production function that is linear in their labor demand; $Y_{j,k,t} = L_{j,k,t}$. To eliminate the steady state inefficiencies of imperfect competition, I assume that there is a constant subsidy in the economy for hiring a unit of labor. Thus, firm j,k’s

\(^{22}\)In the case of CES aggregation this function reduces to

$$D(P_{j,k,t}, P_{j,-k,t}) = \frac{P_{j,k,t}^{-\eta}}{\sum_{l \in K} P_{j,l,t}^{-\eta}}.$$

\(^{23}\)The linear disutility in labor is a common assumption in the models of monetary non-neutrality (for instance, see Golosov and Lucas Jr (2007)) which eliminates the source of across industry strategic complementarity from the household side. I use this assumption to the same end in order to mainly focus on micro-founding within industry strategic complementarities.

\(^{24}\)There is also a new growing literature that argues information rigidities are more consistent with certain aspects of the pricing behavior of firms rather than Calvo pricing or menu cost models. For instance, see, Stevens (2015); Khaw, Stevens and Woodford (2017).
nominal profit at time t is given by

$$
\Pi_{j,k,t} = Q_t \Pi(P_{j,k,t}, P_{j,-k,t}, W_t),
$$

$$
\Pi(P_{j,k,t}, P_{j,-k,t}, W_t) \equiv (P_{j,k,t} - (1 - \bar{s})W_t)D(P_{j,k,t}, P_{j,-k,t}).
$$

Here, $P_{j,k,t}$ is firm j,k’s own price, $P_{j,-k,t}$ is the vector of other firms’ price in industry j, Q_t is the nominal aggregate demand, W_t is the nominal wage, and \bar{s} is the hiring subsidy per unit of labor. I assume that there is a large number of industries in the economy so that every firm’s effect on aggregate nominal demand is negligible.

Firms are rationally inattentive. At each period t they take their initial information set as given and choose an arbitrary number of signals from a set available signals, S^t, subject to an information processing constraint. They then form their new information set and set their prices based on that. In Appendix B, I carefully define these concepts for the dynamic model. Here, I focus on characterizing the firms’ problem taking these definitions as given.

A strategy for any firm is to choose a set of signals to observe over time ($S_{j,k,t} \subset S^t$) and a pricing strategy that maps its information set to their optimal price at any given period, $P_{j,k,t} : S_{j,k,t} \rightarrow \mathbb{R}$, where $S_{j,k}^{t} = (S_{j,k,t})_{t=0}^{T}$ is the firm’s information set at time t. Accordingly, given a strategy for all other firms in the economy, ($S_{j,l,t}^{T} \subset S^t, P_{j,l,t} : S_{j,l,t}^{T} \rightarrow \mathbb{R}$)_{t=0,j,l \neq k}^{\infty}, firm j,k’s problem is to maximize the net present value of their life time profits given an initial information set that they inherit at the time of maximization:

$$
V_t(S_{j,k}^{t-1}) = \max_{S_{j,k,t} \subset S^t, P_{j,k,t} : (S_{j,k,t})^{T}_{t=0}} E\left[Q_0\Pi(P_{j,k,t}(S_{j,k}^{t}), P_{j,-k,t}(S_{j,-k}^{t}), \phi Q_t) \right]
$$

$$
+ \beta V_{t+1}(S_{j,k}^{t}) \left|S_{j,k}^{t-1}\right|
$$

$$
s.t. \quad T(S_{j,k,t}, (Q_{\tau}, P_{l,m,\tau}(S_{l,m}^{t})^{T}_{\tau=0,l,m \neq j,k} | S_{j,k}^{t-1}) \leq \kappa,
$$

$$
S_{j,k}^{t} = S_{j,k}^{t-1} \cup \{S_{j,k,t}\}
$$

where the constraint implies that the amount of information that a firm can add to its information set about the state of the economy at a given time is bounded by κ bits. \footnote{We show in Afrouzi and Yang (2019) when such a problem is indeed a contraction mapping so that a unique $V(.)$ exists. Here we take that result as given.}
4.3 Monetary Policy and General Equilibrium

For simplicity, I assume that the monetary policy is set in terms of the growth of aggregate demand. This is justified by the household’s intertemporal Euler equation as it establishes a direct relationship between nominal rates and the expected growth in nominal demand. Following the literature26, I particularly assume that this growth rate is an AR(1) process with a persistence of ρ:

$$ \log\left(\frac{Q_t}{Q_{t-1}}\right) = \rho \log\left(\frac{Q_{t-1}}{Q_{t-2}}\right) + u_t. \quad (7) $$

Definition 4. A general equilibrium for the economy is an allocation for the household,

$$ \Omega^H \equiv \{(C_{j,k,t})_{j,k}\in J \times K, L^s_t, B_t\}_{t=0}^\infty, $$
a strategy profile for firms given an initial set of signals

$$ \Omega^F \equiv \{(S_{j,k,t} \subset S^t, P_{j,k,t}, L^d_{j,k,t}, Y_{j,k,t})_{t=0}^\infty\}_{j,k\in J \times K} \cup \{S_{j,k}^{-1}\}_{j,k\in J \times K}, $$

and a set of prices $\{i_t, P_t, W_t\}_{t=0}^\infty$ such that

1. Households: given prices and Ω^F, the household’s allocation solves their problem as specified in Equation (4).

2. Firms: given prices and Ω^H, and the implied labor supply and output demand curves, no firm has an incentive to deviate from Ω^F.

3. Monetary Policy: given prices, Ω^F and Ω^H, $\{Q_t \equiv P_tC_t\}_{t=0}^\infty$ satisfies the monetary policy rule specified in Equation (7).

4. Markets clear:

 Goods Markets: $C_{j,k,t} = Y_{j,k,t}, \forall j, k \in J \times K$,

 Labor Markets: $\sum_{(j,k)\in J \times K} L^d_{j,k,t} = L^s_t$.

4.4 The Source of Strategic Complementarity

Contrary to models of monopolistic competition where constant elasticity of demand implies a constant markup for firms over their marginal cost, an oligopolistic environment makes these markups codependent. When a firm in an industry changes their price, in essence, it is

26See, for instance, Maćkowiak and Wiederholt (2009); Mankiw and Reis (2002); Woodford (2003a).
influencing the distribution of the demand across all firms in their industry. In other words, the elasticity of demand for firms within an industry depends on the relative prices of all those firms and is no longer a constant. A look at the best response of a firm to a particular realization of \(P_{j,-k,t} \) and \(Q_t \) manifests this codependence:

\[
P^*_{j,k,t} = \mu(P^*_{j,k,t}, P_{j,-k,t}) \phi(1 - \bar{s})Q_t,
\]

where the optimal markup has the familiar expression in terms of the elasticity of a firm’s demand, \(\mu(P^*_{j,k,t}, P_{j,-k,t}) = \frac{\varepsilon_D(P^*_{j,k,t}, P_{j,-k,t})}{\varepsilon_D(P^*_{j,k,t}, P_{j,-k,t}) - 1}. \)

This clarifies the source of industry level strategic complementarity in this economy. Firms lose profits if they do not adjust their markup due to changes in their competitors’ prices. The expressions for strategic complementarity and markups in the steady state for the CES aggregator are:

\[
\alpha = 1 - \frac{\eta^{-1}}{K}, \quad \mu = \frac{\eta}{\eta - 1} + \frac{1}{(\eta - 1)(K - 1)}.
\]

The specific example of the CES aggregator shows that more competition in terms of the number of firms not only decreases the average markups of firms, which is a very intuitive implication of competition, but also decreases the strategic complementarity within industries. The reason for the latter is simple: as the number of competitors grows within an industry, every firm becomes smaller in proportion to its competitors and equally incapable of affecting their elasticity of demand by changing their price.

These expressions for the CES aggregator also show why this particular aggregator is too restrictive for a quantitative analysis of this model. Strategic complementarity under this aggregator is bounded above by 0.5 because \(K \geq 2 \), which is no way near the value of 0.9 that is observed in the data. This is due to the fact that the CES aggregator does not allow the elasticity of demand to be sensitive enough to the prices of other firms. To match this level of strategic complementarity quantitatively, while simultaneously keeping

\[27\text{Here, } \varepsilon_D(P_{j,k,t}, P_{j,-k,t}) = \frac{\partial Y_{j,k,t}}{\partial P_{j,k,t}} \text{ is firm } j, k’s elasticity of demand with respect to its own price. The assumption that the aggregator function over industry goods, } \Phi(,)., \text{ is homogeneous of degree one implies that demand elasticities and markups are independent of the level of nominal prices and solely depend on the relative prices of firms within an industry. In other words, } \mu(,.,) \text{ and } \varepsilon_D(,.,) \text{ are homogeneous of degree zero. In particular, in the case of the CES aggregator for industry goods this elasticity is }
\]

\[
\varepsilon_D(P_{j,k,t}, P_{j,-k,t}) = \eta - (\eta - 1)\frac{P_{j,k,t}^{1-\eta}}{\sum_{l \in K} P_{j,l,t}^{1-\eta}}.
\]

23
the qualitative properties of the CES aggregator, I consider the following generalization, and in Appendix B I derive the demand functions that imply them:

\[
\varepsilon_D(P_{j,k,t}; P_{j,-k,t}) = \eta - (\eta - 1) \left(\frac{P_{1-\eta}^{1-\eta_{j,k,t}}}{\sum_{k \in K} P_{1-\eta}^{1-\eta_{j,k,t}}} \right)^{1+\xi} \left(\frac{\bar{P}^{1-\eta}}{\sum_{k \in K} \bar{P}_{1-\eta}^{1-\eta}} \right)^{-\xi},
\]

where the new parameter \(\xi \) now captures how the elasticity of demand changes with the relative prices within the industry and allows us to match the elasticity of the markup independently. An alternative is to use a Kimball aggregator;\(^{28}\) however, this turns out to be inconsistent with the micro-data: in Appendix (B.3), I derive the demand functions of firms given a general form of Kimball aggregator and prove that it is impossible to match the level of strategic complementarity in the data as well as its elasticity to the number of competitors, as documented in Table (2). Notice that this specification preserves the steady state properties of the CES aggregator up to the elasticities of demand and average markups, and only changes the elasticity of the elasticity of demand, which is related to the third order derivatives of the function \(\Phi(.) \). It embeds the CES aggregator when \(\xi = 0 \), and the two are the same function for all values of \(\xi \) when \(K \to \infty \), which corresponds to having a measure of firms within industries.\(^{29}\)

Proposition 4. There is strict industry level strategic complementarity in pricing, meaning that \(\alpha \in (0, 1) \), as long as a firm’s elasticity of demand is increasing in their price, which corresponds to \(\xi > -1 \). Moreover, strategic complementarity is increasing in the elasticity of substitution \(\eta \), decreasing in the number of firms within industries, \(K \), and converges to zero as \(K \to \infty \). The expression for \(\alpha \) is

\[
\alpha = \frac{(1 + \xi)(1 - \eta^{-1})}{K + \xi(1 - \eta^{-1})}.
\]

These elasticities preserve the qualitative properties of the CES aggregator for the strategic complementarity. As the number of competitors for a firm goes up, their elasticity of demand loses its sensitivity to the price of the firm relative to its competitors and \(\alpha \) decreases, with \(\alpha \downarrow 0 \) for \(K \to \infty \). In this limit, the firm knows that their demand is only due to the weak substitutability of their good with respect to their competitors, so that their elasticity of demand is just the elasticity of substitution between their good and those of

\(^{28}\)See Kimball (1995), a recent survey of whose applications is discussed in Gopinath and Itskhoki (2011) and Klenow and Willis (2016).

\(^{29}\)Notice that these elasticities are also well-defined in the sense that \(\varepsilon_D(P_{j,k,t}, P_{j,-k,t}) \geq 1 \) in a neighborhood around any symmetric point.
The elasticity of substitution, however, has the opposite effect on strategic complementarity. The higher is η, the more substitutable the firm’s product is with those of its competitors implying that the firm would lose more profits if they do not match the prices of their competitors. Accordingly, more substitutability translates into higher strategic complementarity.

Finally, a larger value for the parameter ξ, which captures the sensitivity of the elasticity of a firm’s demand to the relative prices in its industry, imply a larger degree of strategic complementarity. This parameter now allows us to match the super-elasticity of a firm’s demand independently from its demand elasticity.

4.5 Incentives in Information Acquisition

Appendix B thoroughly discusses my approach for solving the rational inattention problem of the firms. Here I discuss the incentives of firms in acquiring information.

In addition to the strategic incentives discussed in the static model, the specification of a firm’s problem in Equation (6) shows how their information set becomes the source of a new dynamic trade-off. At every period, firms understand that the information they choose to see will not only inform them about their contemporaneous optimal price, but also about their future payoffs. While the dynamic incentives of a rationally inattentive agent is the main focus of Afrouzi and Yang (2019), the main objective here is to understand the effects of the strategic trade-off that imperfectly competitive firms face in allocating their attention.

To better understand the separate roles that these strategic incentives play in the their price-setting behavior of firms, in this paper I shut down the dynamic incentives of firms completely by assuming that they do not endogenize the continuation value of information in their maximization problem. This does not eliminate the necessity of tracking firms’ signals over time, as they still rely on their previous signals in forming their beliefs about the fundamental and the prices of their competitors. However, the lack of dynamic incentives implies that firms ignore these continuation values in choosing their information.

To solve the firms’ problem, I derive the second order approximation of firms’ losses from sub-optimal pricing following the rational inattention literature, and assume that they minimize the expected net present value of these losses subject to the attention constraint.30

At any time, given a realization of $P_{j,-k,t}$ and Q_t, a firm’s profit loss from charging a price

30Notice that profit maximization is equivalent to minimizing these losses over time. The second order approximation reduces the state space of the problem from a whole distributions to its covariance matrix by implying that the distribution is a multivariate Normal. Moreover, since optimal signals under Gaussian fundamentals and quadratic objectives are also Gaussian, it allows us to only focus on Gaussian signals without loss of generality.
\(P_{j,k,t} \) is given by

\[
L(P_{j,k,t}, P_{j,-k,t}, W_t) \equiv \max_x \Pi(x, P_{j,-k,t}, W_t) - \Pi(P_{j,k,t}, P_{j,-k,t}, W_t) = (p_{j,k,t} - (1 - \alpha)w_t - \frac{1}{K-1} \sum_{l \neq k} p_{j,l,t})^2.
\]

Here, small letters denote percentage deviations from the steady state, and \(\alpha \) is the degree of industry level strategic complementarity which is now directly linked to the microfoundations of the model. The following Proposition derives the form of the signals that firms choose to see in the equilibrium.

Proposition 5. Given a strategy profile for all other firms in the economy, a particular firm prefers to see only one signal at any given time. Moreover, the optimal signal of firm \(j, k \) at time \(t \) is

\[
S_{j,k,t} = (1 - \alpha)q_t + \alpha p_{j,-k,t}(S_{j,-k,t}) + e_{j,k,t}
\]

where \(q_t \) is the nominal aggregate demand, \(p_{j,-k,t} \) is the average price of \(j, k \)'s competitors, and \(e_{j,k,t} \) is the rational inattention error of the firm.

The closed form for the optimal signal in this case shows how firms incorporate the mistakes of their competitors into their information sets. To see this given the strategy of others, decompose their average price at time \(t \) to its projection on the history of fundamentals and the part that is orthogonal to them

\[
p_{j,-k,t}(S_{j,-k,t}) = \underbrace{p_{j,-k,t}(S_{j,-k,t})}_{\text{projection on realizations of all } q_{t-\tau} \text{'s}} + \underbrace{v_{j,-k,t}}_{\text{orthogonal to all realizations of } q_{t-\tau} \text{'s}}.
\]

This is analogous to the decomposition that I did in the static model. It separates the average prices of others to a part that is linearly projected on current and past realizations of the fundamental, and a part that is orthogonal to it, denoted by \(v_{j,-k,t} \). Similar to before, we call these the mistakes of a firm’s competitors in pricing. Notice that the finiteness of the number of competitors immediately implies that \(\text{var}(v_{j,-k,t}) \neq 0 \). Given this decomposition, the optimal signal of the firm is

\[
S_{j,k,t} = \underbrace{(1 - \alpha)q_t + \alpha p_{j,-k,t}(S_{j,-k,t})}_{\text{predictive of industry price changes}} + \alpha v_{j,-k,t} + e_{j,k,t}.
\]

This decomposition of the signal illustrates the main departure of this paper from models
that assume a measure of firms. Since \(\text{var}(v_{j,-k,t}) \neq 0 \), the signal of a firm co-varies more with the price changes of its competitors than with the fundamentals of the economy.\(^{31}\) When there is a measure of firms, however, the term \(\alpha v_{j,-k,t} \) disappears and these two covariances converge to one another. Intuitively, going back to the result in Proposition 3, this implies that when \(\alpha \) is large enough, and there are a finite number of firms in industries, firms are more informed about their own industry prices than the fundamentals of the economy. In the next subsection, I show how for large \(\alpha \)'s, it is these expectations that mainly drive the inflation in the economy.

Moreover, given the joint stochastic process of these signals, the best pricing response of a firm reduces to a Kalman filtering problem, which then implies that in a stationary equilibrium

\[
p_{j,k,t}(S^t_{j,k,t}) = \sum_{\tau=0}^{\infty} \delta^\tau S_{j,k,t-\tau},
\]

where \((\delta^\tau)_{\tau=0}^{\infty} \) is a summable sequence.\(^{32}\) Intuitively, these \(\delta^\tau \)'s represent the confidence of the agent on how informative each element of her information set is about the optimal price that she would like to charge at time \(t \). If a firm did not make mistakes, then the only signal that would matter for it at time \(t \) would be \(S_{j,k,t} = (1-\alpha)q_t + \alpha p_{j,-k,t}(S^t_{j,-k}) \), so that \(\delta^0 = 1, \delta^\tau = 0, \forall \tau \geq 1 \). However, making mistakes over time reduces the informativeness of a firm’s signals and it finds it optimal to put some weight on their previous signals in setting their prices. Therefore, the more uninformative the signals, the more persistent the response of firm’s prices would be to a shock over time.

Given the result in this Proposition 5, solving the model reduces to finding the following fixed point: a symmetric stationary equilibrium is a stationary joint stochastic process for signals of firms, and a pricing strategy \((\delta^\tau)_{\tau=0}^{\infty} \), such that for any firm whose competitors set their prices according to this sequence, the firm finds it optimal to use \((\delta^\tau)_{\tau=0}^{\infty} \) for setting its prices. Appendix B lays out the computational algorithm that I use to solve for the joint stochastic process of signals and pricing strategies.

\(^{31}\)This in itself does not mean that the signal is more predictive of a firm’s competitors’ prices than the aggregate economy since predictive power of a signal also depends on the volatility of the variable that is being predicted, and industry prices are more volatile than the aggregate economy. However, as we showed in Proposition 3, once \(\alpha \) gets large enough, this difference is large enough so that firms end up with more information about their own industry price changes than the fundamental.

\(^{32}\)It is worth mentioning that these pricing strategies are not necessarily time independent, as the initial signal structure of firms determines their initial prior about the state of the economy, and affects their prices for periods to come. To get around this issue, in solving the model, I assume that the initial signal structure is such that these firms’ best pricing responses are stationary. This is equivalent to assuming that the game starts with an information structure that corresponds to the steady state of firms’ attention allocation problem. For details, see Appendix B.
4.6 Inflation Dynamics and the Phillips Curve

The following Proposition derives the Phillips curve of this economy.

Proposition 6. The Phillips curve of this economy is

\[
\pi_t = (1 - \alpha)\overline{E}_{t-1}^{j,k}[\Delta q_t] + \alpha\overline{E}_{t-1}^{j,k}[\pi_{j,-k,t}] + (1 - \alpha)(2^\kappa - 1)y_t,
\]

where \(\overline{E}_{t-1}^{j,k}[\Delta q_t]\) is the average expected growth of nominal demand at \(t - 1\), which is the sum of inflation and output growth, \(\Delta q_t = \pi_t + \Delta y_t\), \(\overline{E}_{t-1}^{j,k}[\pi_{j,-k,t}]\) is the average expectation across firms of their competitors’ price changes, and \(y_t\) is the output gap.

The Phillips curve illustrates the main insight of this paper. In economies with high industry level strategic complementarity (\(\alpha\) close to 1), it is firms’ average expectation of their own-industry price changes that drives aggregate inflation rather than their expectations of the growth in aggregate demand.\(^{33}\) Moreover, Proposition 5 shows that with endogenous information acquisition, a larger \(\alpha\) also implies that firms learn more about the prices of their competitors relative to the aggregate demand; an insight that is comparable with Proposition 3 in the static model. Therefore, when \(\alpha\) is large, not only is inflation driven more by firms’ expectations of their own industry price changes, but also firms’ expectations are formed under information structures that are more informative about their own industry price changes.

Additionally, the slope of the Phillips curve shows how these strategic complementarities, as well as the capacity of processing information, affect monetary non-neutrality in this economy. Higher capacity of processing information makes the Phillips curve steeper, such that in the limit when \(\kappa \to \infty\), the Phillips curve is vertical. When firms have infinite attention, their estimates of the fundamental as well as their competitors’ prices are also infinitely precise. Firms immediately realize changes in the fundamental and react to it under the common knowledge that every other firm is also doing so, which leads to complete monetary neutrality in the economy.

\(^{33}\)For comparison, we show in Afrouzi and Yang (2019) that in an economy with a measure of firms the Phillips curve is in terms of the firms’ expectations of the aggregate inflation: \(\pi_t = (1 - \hat{\alpha})\overline{E}_{t-1}[\Delta q_t] + \hat{\alpha}\overline{E}_{t-1}[\pi_t] + (1 - \hat{\alpha})(2^\kappa - 1)y_t\), where \(\hat{\alpha}\) is the degree of across industry strategic complementarity. This is also comparable to a Phillips curve with sticky information: \(\pi_t = (1 - \hat{\alpha})\overline{E}_{t-1}[\Delta q_t] + \hat{\alpha}\overline{E}_{t-1}[\pi_t] + (1 - \hat{\alpha})\overline{\lambda}_{1-\lambda}y_t\), where \(\overline{\lambda}\) is the fraction of firms that update their information in a given period. Notice that contrary to the result in this paper, in both these Phillips curve inflation is directly related to firms’ average expectations of aggregate inflation.
4.7 Calibration

Recall that the rational inattention problem of an industry is characterized by the following parameters: capacity of processing information for every firm, $\lambda = 1 - 2^{-2\kappa} \in [0, 1)$; the number of firms in the industry, K; and the degree of strategic complementarity α. Among these, the first two are deep parameters of the model; but α is pinned down as a function of ξ, η and K by the expression in Proposition 4.

Table (6) shows the calibrated values of these parameters. I calibrate the elasticity of substitution within industry goods, η, to a value of 6 to match the average markup of 30%, reported by the firms in the survey. A value of 6 for this parameter is also in line with the usual calibration in the macroeconomics literature. Moreover, I set the number of competitors in industries to a baseline value of 5, the average value reported by the firms weighted by their market share in the sample. Finally, I calibrate the curvature of the elasticity of demand, ξ, to 40 in order to match an average strategic complementarity of 0.9 as observed in the data. In addition, I calibrate the persistence of the growth in nominal demand, ρ, to the persistence of the nominal GDP growth in New Zealand, 0.5.\footnote{I restrict the time series to post 1991 data to be consistent with New Zealand’s shift in monetary policy towards inflation targeting in that time frame.}

Calibrating the capacity of processing information has been a challenge in the rational inattention literature due to a lack of suitable data so far. However, the New Zealand survey allows me to calibrate this parameter by directly measuring the quality of firms’ information about aggregate inflation. I follow Coibion and Gorodnichenko (2015) to measure the degree of information rigidity in forecasts of aggregate inflation from the data by regressing the forecast revisions of firms on their forecast errors, and then taking the calibration of other parameters as given I find that $\lambda = 0.7$ generates the same coefficient within the model.

A value of 0.7 is relatively large and represents a relatively small degree of information rigidity, especially compared to the current models of noisy information, which usually assume calibrations that imply lower Kalman gains. The empirical literature has also estimated values that are less than 0.7. For instance, Coibion and Gorodnichenko (2015) estimate a Kalman gain of 0.5. This model, however, does not need a low value for λ to match the high degree of aggregate information rigidity due to its endogenous propagation mechanism. Despite a high λ at the micro level, firms spend a large portion of their attention tracking the mistakes of their competitors and the portion that is allocated to tracking aggregate fundamentals is therefore significantly lower. Simply put, firms devote a lot of attention to tracking their optimal prices, even more than what professional forecasters do for inflation. However, since they do not directly care about aggregate inflation, their forecasts manifests a high degree of rigidity.
5 The Aggregate Implications of Strategic Inattention

The main driving force of my analysis so far has been the effect of a firm’s number of competitors on their information acquisition incentives. In this section, I further this analysis by investigating how competition affects the propagation of monetary policy shocks to inflation and output through these incentives.

Figure (3) shows the impulse responses of inflation and output to a one percent shock to the growth of nominal demand, for the case of a finite K calibrated to the average number of competitors in the data versus the monopolistic competition limit when $K \to \infty$. When the shock hits the economy, firms do not observe it directly. Instead, they observe a signal that is different from its expected value based on their prior – in other words, they become surprised by their signals. From the perspective of the firms, however, this surprise could come from any combination of three independent sources: a change in the fundamental, a mistake on the part of their competitors, or an idiosyncratic mistake on their own part that is orthogonal to the first two sources. It is the different incentives of firms in responding to each of these sources that creates monetary non-neutrality. While firms would like to respond to any changes in the first two sources, to each to a different degree, they do not want to change their prices if the surprise is due to a mistake on their own part. Hence, reluctant about the source of the shock, firms respond to their surprises in a probabilistic manner, and change their prices on average by less than the increase in nominal demand, which leads to a muted inflation response. Furthermore, the wedge between the increase in nominal demand and the increase in nominal prices creates an excess real demand in the economy that is met with an increase in production in the equilibrium. Thus, output rises on impact.

In contrast to the static model, which is equivalent to the dynamic one if shocks were i.i.d. over time, firms observe more and more signals as time passes and update their beliefs about the origin of the shock. Since each of the possible sources for the shock leads to a different persistence in the surprises that firms observe in their signals, firms are able to recognize the source of the shock over time, and adjust their prices accordingly. Consequently, after a sufficient number of periods, firms tune their prices perfectly to the change in nominal demand, inflation goes back to zero as prices converge to their new level, and the real excess demand disappears along with output falling back to its initial level.

The figure also shows how higher levels of competition affect the non-neutrality of money in a very significant way. Compared to the case of monopolistic competition the persistence of output and inflation as well as their on impact response are more than doubled under
the calibration of K.\footnote{This can also be translated into implications for cyclical-ity of markups as markups in this model are equal to the ratio of aggregate price to nominal aggregate demand. The model therefore predicts that markups are counter-cyclical and that the prices of less competitive firms are more rigid. This is consistent with Barro and Tenreyro (2006) who find that the relative prices of less competitive goods move countercyclically.} It is important to note, however, that these large quantitative effects of competition reflect two distinct channels through which competition alters economic outcomes. The key point is that competition changes firms’ behavior in two ways: first, the type of information they choose to see, and second, how they use that information. I call the the first channel the \textit{attention reallocation} effect: as the number of competitors increase firms shift their attention from their competitors’ beliefs to the fundamental shocks and start receiving signals that are more informative of the latter in the equilibrium. The second channel is the \textit{strategic complementarity in pricing} effect: fixing an information structure, higher competition alters the super-elasticities of firms’ demand and reduces the dependence of firms’ profits to their competitors’ prices. Since firms with more competitors are less affected by others’ mistakes, they are more inclined to use their information about aggregates in setting their prices.

While these two channels affect the impulse response functions of the model in the same direction, from an economic perspective they are different in nature. The attention reallocation channel is novel to the literature and characterizes an effect that has been absent in previous models either due to an exogenously assumed signal structure or due to the assumption that every firm interacts with a measure of others. The strategic complementarity in pricing channel is also new in the sense that it micro-founds the dependence of strategic complementarity to the number of competitors within every industry, but the effects of different levels of strategic complementarity on the propagation of monetary policy shocks in models of information rigidity has already been pointed out in the literature by seminal work of Mankiw and Reis (2002); Woodford (2003a); Maćkowiak and Wiederholt (2009).

For the rest of this section I decompose the impulse responses of the model to investigate each of these channels separately.

\section{5.1 The Attention Reallocation Effects of Competition}

Figure (4) shows the impulse responses of inflation and output in the economy with $K = 9$ to a one percent shock to the growth of nominal aggregate demand, with and without strategic inattention. Here, firms in both economies face the same level of strategic complementarity in pricing, but in the economy without strategic inattention, firms allocate all their attention to the fundamental – as if they faced an infinite number of competitors. This counterfactual exercise is therefore captures the sole impact of the attention reallocation effect as firm in
both economies choose their information differently, but they all use that information in the same way since strategic complementarity in pricing is the same across the two economies.

The role of strategic inattention is significant: inflation response is 47 percent lower on impact and its half-life is 31 percent longer. Similarly, the impact response of output is 25 percent larger, with its half-life being slightly longer with a 5 percent increase.

The mechanism behind this increase in non-neutrality relates to equilibrium incentives of firms in allocating their attention within their industries. When the economy is less competitive – K is small – firms are more worried about the mistakes of their competitors and allocate a high amount of attention to tracking those mistakes. Since mistakes are orthogonal to the elements of the fundamental, when all of the firms in the economy spend more resources to learning the mistakes of their competitors, they know less about the fundamental. The incentive of learning others’ mistakes diminishes with competition within industries. When every firm in the economy competes with a large number of competitors, it is confident that the mistakes of others wash out, and allocates more attention to learning the fundamental of the economy. As a result, in a more competitive economy, firms pay more attention to the fundamental and learn it more quickly than firms in a less competitive economy. When firms pay less attention to the fundamental over time by paying more attention to the mistakes of their competitor, it takes them more time to learn the fundamental through their signals. Thus, it takes longer for such firms to learn the shock and perfectly adjust their prices with respect to it, which then directly leads to more persistent responses of output and inflation to the shock.

5.2 The Strategic Complementarity Channel

Figure (5) shows the impulse responses of inflation and output to a one percent shock to the growth of aggregate demand only in response to the strategic complementarity channel. Here the baseline economy is an economy with $K = 9$ and no strategic attention and the counterfactual is an economy where $K \to \infty$. By assuming no strategic inattention in the benchmark economy, I have shut down the attention reallocation effect as firms in both economies choose to allocate all their attention to the fundamental. The only difference here is how they choose to use that information. Therefore, this exercise captures the sole effect of the strategic complementarity in pricing channel.

The intuition is similar to what the previous literature has documented once we take into account that strategic complementarity decreases with the number of competitors. As pointed out in the previous literature, lower strategic complementarity in pricing significantly attenuates the non-neutrality of money. Relative to the benchmark, inflation response is 70%
smaller on impact and its half-life is 64% longer. Moreover, output response is 48% larger
on impact and its half-life is 43% longer.

Here firms are not paying any direct attention to their competitors’ beliefs, and even
though the strategic complementarity in pricing relates their profits to those of their com-
petitors, they have to form beliefs over their competitors’ prices only through what they
know about the fundamental. The more strategic complementarity there is, the less firms
can rely on their information as their higher order beliefs about their competitors become
more and more important. Thus, firms with lower number of competitors are more reluc-
tant in responding to monetary policy shocks, and it takes them longer to fully adjust their
prices to changes in nominal demand, making inflation more persistent. As a result output
responds more strongly in such economies and its persistent is higher as firms take more
time to adjust their prices.

6 Concluding Remarks

Managing aggregate inflation expectations has been at the center of monetary policy makers’
attention not only for controlling inflation but also as a potential instrument after the onset of
the zero lower bound during the Great Recession. However, the expectations of price setters
from aggregate inflation are highly biased and volatile in countries that have had low and
stable inflation for decades, which goes against the close relationship that baseline monetary
models predict between the two. Not only do these unanchored inflation expectations pose a
serious challenge in reconciling standard models with the empirical evidence, but also render
the unconventional monetary policies that aim on managing them ineffective.

In this paper, I develop a model to address this puzzle and show that what matters mainly
for price setters is their expectations of their own industry inflation rather than aggregate
inflation. Managers of firms do not directly care about aggregate inflation and are mainly
concerned with how their own competitors change their prices in the face of a shock. In
fact, when allowed to choose their information structure, managers are willing to sacrifice
information about the aggregate economy by shifting their attention towards learning their
competitors’ prices. As a result, they are more informed about their optimal prices than
what their expectations of aggregate inflation would suggest.

Moreover, I show that these endogenous informational incentives have significant impli-
cations for the propagation of monetary policy shocks. A two-fold increase in the number
of competitors that a firm faces at the micro level from the calibrated value of 5 to 10 de-
creases the half-lives of output and inflation responses to a monetary policy shock by 32%.
The impact effects are similarly large. Doubling the number of competitors for every firm
increases the impact response of inflation to a monetary policy shock by 65% and decreases the impact response of output by 18%.

The results of this paper provide valuable insights for policy makers. On the one hand, the fact that aggregate inflation is not the primary concern of firms implies that unanchored inflation expectations are not necessarily a problem for monetary policy. After all, the main objective of inflation targeting is to stabilize inflation, and in doing so, it eliminates it as a concern for economic agents. Therefore, the fact that firms do not have to track it closely when it is low and stable is in itself a success for monetary policy. On the other hand, this implies that managing expectations of aggregate inflation is neither an effective tool for controlling inflation nor necessarily a powerful instrument for policies such as forward guidance. These expectations are relatively unimportant for firms and do not have much impact on their pricing decisions.

Nevertheless, this result does not necessarily rule out policies that target managing expectations, but rather provides a new perspective on how those policies should be framed and which expectations they should target. An important takeaway from this paper is that for such a policy to be successful, it has to communicate the course of monetary policy to price setters not in terms of how it will steer the overall prices but in terms of how it will effect their own industry prices. In other words, framing policy in terms of the aggregate variables will not gain as much attention and response from firms as it would if the news about the policy were to reach them in terms of how their industries would be affected. How policy can achieve these ends remains a question that deserves more investigation.

References

Figures

Figure 1: Distributions of firms’ nowcasts for both aggregate and industry level inflation.

Notes: the dashed vertical lines denote the means of these distributions. The solid vertical line shows the realized inflation.

Figure 2: Distributions of the size of firms’ nowcast errors for aggregate and own-industry inflation.

Notes: the dashed vertical lines denote the means of these distributions.
Figure 3: Overall effects of oligopolistic competition

Notes: the figure shows impulse response functions of output and inflation to a 1 percent shock to the growth of aggregate demand, for overall effects of competition; the black curves represent the economy with $K = 9$ and strategic interaction (S.I.) and the dashed curves represent the economy with monopolistic competition in all sectors ($K \to \infty$). Money is less neutral with imperfect competition. See Section 5 for a discussion of these results.

Figure 4: Effects of oligopolistic competition through attention reallocation

Notes: the figure shows impulse response functions of output and inflation to a 1 percent shock to the growth of aggregate demand, for attention reallocation effects of competition; the black curves represent the economy with $K = 9$ and strategic interaction (S.I.) and the dashed curves represent the economy with the same competition but no strategic inattention among firms. Money is less neutral with strategic inattention. See Section 5 for a discussion of these results.
Figure 5: Effects of oligopolistic competition through strategic complementarity in pricing

Notes: the figure shows impulse response functions of output and inflation to a 1 percent shock to the growth of aggregate demand, for strategic complementarity effects of competition; the black curves represent the economy with $K = 9$ and no strategic interaction (S.I.) and the dashed curves represent the economy with monopolistic competition in all sectors. Money is less neutral with lower micro-level strategic complementarity. See Section 5 for a discussion of these results.
Tables

Table 1: Number of Competitors for Firms in New Zealand

<table>
<thead>
<tr>
<th></th>
<th>Number of Competitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>8.449</td>
</tr>
<tr>
<td>(0.113)</td>
<td>(0.198)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>-</td>
</tr>
<tr>
<td>Construction</td>
<td>-1.285</td>
</tr>
<tr>
<td>Trade</td>
<td>0.183</td>
</tr>
<tr>
<td>Services</td>
<td>0.319</td>
</tr>
<tr>
<td>Observations</td>
<td>3072</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

Notes: the table reports the average number of competitors that firms report they face in their main product market in New Zealand. Firms in the construction industry face a slightly lower number of competitors, but overall the number of competitors are similar across different industries.

Table 2: Strategic Complementarity for Firms in New Zealand

<table>
<thead>
<tr>
<th></th>
<th>Strategic Complementarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.817</td>
</tr>
<tr>
<td>(0.008)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>log(#competitors)</td>
<td>-0.020</td>
</tr>
<tr>
<td>(0.010)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>-</td>
</tr>
<tr>
<td>Construction</td>
<td>0.060</td>
</tr>
<tr>
<td>Trade</td>
<td>0.012</td>
</tr>
<tr>
<td>Services</td>
<td>0.032</td>
</tr>
<tr>
<td>Observations</td>
<td>2824</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

Notes: the table reports the degree of strategic complementarity for firms in New Zealand. Strategic complementarity is large (0.8) and decreases with the number of competitors. However, it does not vary across industries.
Table 3: Size of Firms’ Nowcast Errors

<table>
<thead>
<tr>
<th>Industry</th>
<th>Observations</th>
<th>Industry inflation</th>
<th>Aggregate inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean</td>
<td>std</td>
</tr>
<tr>
<td>Construction</td>
<td>52</td>
<td>0.75</td>
<td>0.54</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>363</td>
<td>1.43</td>
<td>1.72</td>
</tr>
<tr>
<td>Financial Services</td>
<td>352</td>
<td>1.51</td>
<td>1.51</td>
</tr>
<tr>
<td>Trade</td>
<td>302</td>
<td>0.63</td>
<td>0.90</td>
</tr>
<tr>
<td>Total</td>
<td>1,069</td>
<td>1.20</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Notes: the table reports the size of firms’ nowcast errors in perceiving aggregate inflation versus industry inflation for the 12 months ending in December 2014.

Table 4: Subjective Uncertainty in Forecasts of Firms

<table>
<thead>
<tr>
<th>Industry</th>
<th>Observations</th>
<th>Industry inflation</th>
<th>Aggregate inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean</td>
<td>std</td>
</tr>
<tr>
<td>Construction</td>
<td>289</td>
<td>0.99</td>
<td>0.87</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>715</td>
<td>0.83</td>
<td>0.60</td>
</tr>
<tr>
<td>Financial Services</td>
<td>617</td>
<td>0.81</td>
<td>0.61</td>
</tr>
<tr>
<td>Trade</td>
<td>419</td>
<td>0.85</td>
<td>0.63</td>
</tr>
<tr>
<td>Total</td>
<td>2,040</td>
<td>0.86</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Notes: the table reports standard deviations of firms’ reported distribution for their forecasts of industry and aggregate inflation. Forecasts were for yearly inflation for the 12 months ending in July 2017.
Table 5: Subjective uncertainty of firms given their number of competitors.

<table>
<thead>
<tr>
<th></th>
<th>aggregate inflation(^a)</th>
<th>industry inflation(^b)</th>
<th>industry rel. to aggregate inflation(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Number of competitors</td>
<td>-0.021</td>
<td>-0.024</td>
<td>-0.010</td>
</tr>
<tr>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Firm controls and industry FEs</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>2,040</td>
<td>1,910</td>
<td>2,040</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.036</td>
<td>0.050</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Notes: the table reports the result of regressing the standard deviation of firms' reported distribution for their forecast of aggregate inflation (a), and industry price change (b) on number of competitors and a set of firm controls. Columns (5) and (6) report the results of regressing the difference of the two standard deviations on the number of competitors.

Robust standard errors in parentheses

Table 6: Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Moment Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>Kalman gain on new signal</td>
<td>0.65</td>
<td>Persistence of nowcast errors</td>
</tr>
<tr>
<td>(K)</td>
<td>Number of firms within industries</td>
<td>5</td>
<td>Average number of competitors</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Elasticity of substitution</td>
<td>6</td>
<td>Average markup</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Curvature of demand elasticity</td>
<td>40</td>
<td>Average strategic comp.</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Persistence of nominal GDP growth</td>
<td>0.5</td>
<td>Nominal GDP growth in NZ</td>
</tr>
</tbody>
</table>

Notes: the table reports the calibrated values of the parameters for the dynamic model of Section 4.
APPENDIX FOR ONLINE PUBLICATION

A Proofs for the Static Model

This section formalizes the static game in Section 2. The Appendix is organized as follows. I start by specifying the Shannon mutual information function in Subsection A.1. Subsection A.2 defines the concept of richness for a set of available information, and characterizes such a set. The main idea behind having a rich set of available information is to endow firms with the freedom of choosing their ideal signals given their capacity. Following this, Subsection A.3 proves the optimality of linear pricing strategies given Gaussian signals, and Subsection A.4 proves that when the set of available signals is rich all firms prefer to see a single signal. Subsection A.5 shows that any equilibrium has an equivalent in terms of the joint distribution it implies for prices among the strategies in which all firms observe a single signal, and derives the conditions that such signals should satisfy. Subsection A.6 shows that the equilibrium is unique given this equivalence relationship. Subsection A.7 derives an intuitive reinterpretation of a firm’s attention problem that is discussed in Section 2. Subsection A.8 contains the proofs of Propositions 1, 2, and 3 as well as the proof for Corollary 1.

A.1 Shannon’s Mutual Information

In information theory a mutual information function is a function that measures the amount of information that two random variables reveal about one another. In this paper following the rational inattention literature, I use Shannon’s mutual information function for the attention constraint of the firms, which is defined as the reduction in entropy that the firm experiences given its signal. In case of Gaussian variables, this function takes a simple and intuitive form. Let \((X,Y) \sim \mathcal{N}(\mu, \Sigma) \). Then, the mutual information between \(X \) and \(Y \) is given by \(I(X;Y) = \frac{1}{2} \log_2 \left(\frac{\operatorname{det}(\Sigma_X)}{\operatorname{det}(\Sigma_{X|Y})} \right) \), where \(\Sigma_{X|Y} = \Sigma_X - \Sigma_{X,Y} \Sigma_Y^{-1} \Sigma_{Y,X} \) is the variance of \(X \) conditional on \(Y \). Intuitively, the mutual information is bigger if the \(Y \) reveals more information about \(X \), leading to a smaller \(\operatorname{det}(\Sigma_{X|Y}) \). In the other extreme case where \(X \perp Y \), then \(\Sigma_{X|Y} = \Sigma_X \) and \(I(X;Y) = 0 \), meaning that if \(X \) is independent of \(Y \), then observing \(Y \) does not change the posterior of an agent about \(X \) and therefore reveals no information about \(X \).

A result from information theory that I will use for proving the optimality of single signals is the data processing inequality. The following lemma proves a weak version of this inequality for completeness.

Lemma 1. Let \(X, Y \) and \(Z \) be three random variables such that \(X \perp Z|Y \). Then \(I(X;Y) \geq I(X;Z) \).

\(^{36}\)In his seminal paper Shannon (1948) showed that under certain axioms there is a unique entropy function.

\(^{37}\)This forms a Markov chain: \(X \to Y \to Z \).
Proof. By the chain rule for mutual information\(^38\) \(\mathcal{I}(X; (Y, Z)) = \mathcal{I}(X; Y) + \mathcal{I}(X; Z|Y) = \mathcal{I}(X; Z) + \mathcal{I}(X; Y|Z)\). Notice that since \(X \perp Z|Y\), then \(\mathcal{I}(X; Z|Y) = 0\). Thus, \(\mathcal{I}(X; Y) = \mathcal{I}(X; Z) + \mathcal{I}(X; Y|Z) \geq \mathcal{I}(X; Z)\).

\[\geq 0\]

A.2 A Rich Set of Available Information

Definition. Let \(\mathcal{S}\) be a set of Gaussian signals. We say \(\mathcal{S}\) is rich if for any mean-zero possibly multivariate Gaussian distribution \(G\), there is a vector of signals in \(\mathcal{S}\) that are distributed according to \(G\).

To specify a rich information structure, suppose in addition to \(q \sim \mathcal{N}(0, 1)\) there are countably many independent sources of randomness in the economy, meaning that there is a set \(\mathcal{B} \equiv \{q, e_1, e_2, \ldots\}\) such that \(\forall i \in \mathbb{N}, e_i \sim \mathcal{N}(0, 1), e_i \perp q\) and \(\forall \{i, j\} \subset \mathbb{N}, j \neq i, e_j \perp e_i\).

Let \(\mathcal{S}\) be the set of all finite linear combinations of the elements of \(\mathcal{B}\) with coefficients in \(\mathbb{R}\): \(\mathcal{S} = \{a_0q + \sum_{i=1}^{N} a_i e_{\sigma(i)}, N \in \mathbb{N}, (a_i)_{i=0}^{N} \subset \mathbb{R}^{N+1}, (\sigma(i))_{i=1}^{N} \subset \mathbb{N}\}\). We let \(\mathcal{S}\) denote the set of all available signals in the economy.

Lemma 2. \(\mathcal{S}\) is rich.

Proof. Suppose \(G\) is a mean-zero Gaussian distribution. Thus, \(G = \mathcal{N}(0, \Sigma)\), where \(\Sigma \in \mathbb{R}^{N \times N}\) is a positive semi-definite matrix for some \(N \in \mathbb{N}\). Since \(\Sigma\) is positive semi-definite, by Spectral theorem there exists an \(A \in \mathbb{R}^{N \times N}\) such that \(\Sigma = A' \times A\). Choose any \(N\) elements of \(\mathcal{B}\), and let \(e\) be the vector of those elements. Then \(e \sim \mathcal{N}(0, I_{N \times N})\) where \(I_{N \times N}\) is the \(N\) dimensional identity matrix. By definition of \(\mathcal{S}\), \(\mathcal{S} \equiv A'e \in \mathcal{S}\). Now notice that \(E[S] = 0\), \(\text{var}(S) = A'\text{var}(e)A = \Sigma\). Hence, \(S \sim \mathcal{N}(0, \Sigma) = G\).

Definition. For a vector of non-zero Gaussian signals \(S \sim \mathcal{N}(0, \Sigma)\), we say elements of \(S\) are distinct if \(\Sigma\) is invertible. In other words, elements of \(S\) are distinct if no two signals in \(S\) are perfectly correlated.

Corollary 2. Let \(S\) be an \(N\)-dimensional vector of non-zero distinct signals whose elements are in \(\mathcal{S}\). Let \(G = \mathcal{N}(0, \Sigma)\) be the distribution of \(S\). Then for any \(N + 1\) dimensional Gaussian distribution, \(\hat{G}\), one of whose marginals is \(G\), there is at least one signal \(\hat{s}\) in \(\mathcal{S}\), such that \(\hat{S} = (S, \hat{s}) \sim \hat{G}\).

Proof. Suppose \(\hat{G} = \mathcal{N}(0, \hat{\Sigma})\), where \(\hat{\Sigma} \in \mathbb{R}^{(N+1) \times (N+1)}\) is a positive semi-definite matrix. Since \(G\) is a marginal of \(\hat{G}\), without loss of generality, rearrange the vectors and columns of \(\hat{\Sigma}\) such that \(\hat{\Sigma} = \left[\begin{array}{cc} x & y' \\ y & \Sigma \end{array}\right]\). If \(x = 0\), then let \(\hat{s} = 0 \sim \mathcal{N}(0, 0)\) and we are done with the proof. If not, notice that since \(\hat{\Sigma}\) is positive semi-definite, its determinant has to be positive: \(\det(\hat{\Sigma}) = \det(x\Sigma - yy') \geq 0\). Since elements of \(S\) are distinct, \(\Sigma\) is invertible. Also \(x > 0\). We can write \(\det(\hat{\Sigma}) = \det(x\Sigma) \det(I_{N \times N} - x^{-1}\Sigma^{-1}yy') \geq 0\), which implies \(\det(I_{N \times N} - x^{-1}\Sigma^{-1}yy') = 1 - x^{-1}y'\Sigma^{-1}y \geq 0 \iff x \geq y'\Sigma^{-1}y\), where the equality is given by Sylvester’s determinant identity. Now, choose \(e_{N+1} \in \mathcal{B}\) such that \(e_{N+1} \perp S\). Such an \(e_{N+1}\)

\(^{38}\)For a formal definition of the chain rule see Cover and Thomas (2012).
exists because all the elements of S are finite linear combinations of B and therefore are only correlated with a finite number of its elements, while B has countably many elements. Let $\hat{s} \equiv y^\top \Sigma^{-1} S + \left[\frac{\sqrt{x} - y^\top \Sigma^{-1} y}{0_{N \times 1}} \right] e_{N+1}$. Notice that $\hat{s} \in S$ as it is a finite linear combination of the elements of B. Notice that $\text{cov}(\hat{s}, S) = y$ and $\text{var}(\hat{s}) = x$. Hence, $(\hat{s}, S) \sim \mathcal{N}(0, \Sigma)$.

A.3 Optimality of Linear Pricing Strategies

Every firm chooses a vector of signals $S_{j,k} \in S^{n_{j,k}}$, where $n_{j,k} \in \mathbb{N}$ is the number of signals that j, k chooses to observe, and a pricing strategy $p_{j,k} : S_{j,k} \to \mathbb{R}$ that maps their signal to a price. Thus, the set of firm j, k’s pure strategies is

$$A_{j,k} = \{\varsigma_{j,k} | \varsigma_{j,k} = (S_{j,k} \in S^{n_{j,k}}, p_{j,k} : S_{j,k} \to \mathbb{R}), n_{j,k} \in \mathbb{N}\}.$$

The set of pure strategies for the game is $A = \{\varsigma | \varsigma = (\varsigma_{j,k})_{j,k \in J \times K}, \varsigma_{j,k} \in A_{j,k}, \forall j, k \in J \times K\}$.

First, I show that in any equilibrium it has to be the case that firms’ play linear pricing strategies are linear in their signals.

Lemma 3. Take a strategy $\varsigma = (S_{j,k}, p_{j,k})_{j,k \in J \times K} \in A$. Then if ς is an equilibrium, then $\forall j, k \in J \times K$, $p_{j,k} = M'_{j,k} S_{j,k}$ for some $M_{j,k} \in \mathbb{R}^{n_{j,k}}$.

Proof. A necessary condition for ς to be an equilibrium is if given $(S_{j,k})_{j,k \in J \times K}$ under ς, $\forall j, k \in J \times K$, $p_{j,k}$ solves $p_{j,k}(S_{j,k}) = \text{argmin}_{p_{j,k}} E[(p_{j,k} - (1-\alpha)q - \alpha \frac{1}{K-1} \sum_{l \neq k} p_{j,l}(S_{j,l}))^2 | S_{j,k}]$.

Since the objective is convex, the sufficient for minimization is if the first order condition holds: $p^*_j(S_{j,k}) = (1 - \tilde{\alpha})E[q|S_{j,k}] + \tilde{\alpha}E[p^*_j(S_j)|S_{j,k}]$, where $\tilde{\alpha} \equiv \frac{\alpha + \frac{\alpha}{K(K-1)}}{1 - \frac{\alpha}{K(K-1)}} < 1$, and $p^*_j(S_j) \equiv K^{-1} \sum_{k \in K} p^*_j(S_{j,k})$. Thus, by iteration $p^*_{j,k}(S_{j,k}) = \lim_{M \to \infty} ((1 - \tilde{\alpha}) \sum_{m=0}^{M} \tilde{\alpha}^m E_{j,k}^{(m)}[q] + \tilde{\alpha}^{M+1} E_{j,k}^{(M+1)}[p^*_j(S_j)])$ where $E_{j,k}^{(0)}[q] \equiv E[q|S_{j,k}]$ is firm j, k’s expectation of the fundamental, and $\forall m \geq 1$,

$$E_{j,k}^{(m)}[q] = K^{-1} \sum_{l \in K} E[E_{j,l}^{(m-1)}[q]|S_{j,l}]$$

is firm j, k’s m’th order higher order belief of its industry’s average expectation of the fundamental. Similarly $E_{j,k}^{(M+1)}[p^*_j(S_j)]$ is firm j, k’s $M + 1$’th order belief of their industry price. Assuming for now that signals are such that expectations are finite, since $\tilde{\alpha} < 1$, the later term in the limit converges to zero and we have:

$$p^*_{j,k}(S_{j,k}) = (1 - \tilde{\alpha}) \sum_{m=0}^{\infty} \tilde{\alpha}^m E_{j,k}^{(m)}[q].$$

(8)

Now, I just need to show that $E_{j,k}^{(m)}[q]$ is linear in $S_{j,k}$, for all m. To see this, since all signals in S are Gaussian and mean zero, $\forall j, k$, let $\Sigma_{q,S_{j,k}} \equiv \text{cov}(S_{j,k}, q) = E[qS'_{j,k}]$. Also given $j, k, \forall l \neq k$, $\Sigma_{S_{j,l},S_{j,k}} = \text{cov}(S_{j,l}, S_{j,k}) = E[S'_{j,l}S'_{j,k}]$ and $\Sigma_{S_{j,k}} = \text{var}(S_{j,k}) = E[S'_{j,k}S'_{j,k}]$.

39 In fact, there are countably many elements in B that are orthogonal to S.

40 If expectations are not finite, then a best response in pricing does not exist. However, since we are characterizing a necessary condition in this lemma, I characterize the best pricing responses conditional on existence.
The proof for linearity of higher order expectations is by induction: notice that for \(m = 0 \), \(\mathbb{E}^{(0)}_{j,k}[q] = \mathbb{E}[q|S_{j,k}] = \sum q S_{j,k} S^{-1}_{j,k} S_{j,k}. \) which implies 0'th order expectations of firms are linear in their signals. Now suppose \(\forall j,l \mathbb{E}^{(m)}_{j,l}[q] = A_{j,l}(m)/S_{j,l} \) for some \(A_{j,l}(m) \in \mathbb{R}^{n_{j,l}}. \) Now, \(\mathbb{E}^{(m+1)}_{j,k}[q] = K^{-1}(A_{j,l}(m) + \sum_{l \neq k} A_{j,l}(m) \sum S_{j,l} S^{-1}_{j,k} S_{j,k}) \). The fact that I have assumed \(\Sigma_{j,k} \) is invertible is without loss of generality, because if \(\Sigma_{j,k} \) is not invertible, since all signals in \(S_{j,k} \) are non-zero then it must be the case that \(S_{j,k} \) contains co-linear signals. In that case we can exclude the redundant signals without changing the posterior of the firm.

Corollary 3. If \(\varsigma = (S_{j,k} \in \mathbb{S}^{n_{j,k}}, p_{j,k}(S_{j,k}) = M'_{j,k}S_{j,k})_{j,k \in J \times K} \in \mathcal{A} \) is an equilibrium, then \(\forall j,k \in J \times K \), \(M_{j,k} = ((1 - \alpha) \sum q S_{j,k} S^{-1}_{j,k} + \alpha \frac{1}{K-1} \sum_{l \neq k} \sum S_{j,l} S_{j,k} S^{-1}_{j,k})' \).

Proof. From the proof of Lemma 3 that if \(\varsigma \) is an equilibrium then pricing strategies should satisfy the following optimality condition:

\[
M_{j,k} S_{j,k} = (1 - \alpha) \mathbb{E}[q|S_{j,k}] + \alpha \frac{1}{K-1} \sum_{l \neq k} \mathbb{E}[M'_{j,l}S_{j,l}|S_{j,k}].
\]

Thus, \(M_{j,k} = ((1 - \alpha) \sum q S_{j,k} S^{-1}_{j,k} + \alpha \frac{1}{K-1} \sum_{l \neq k} \sum S_{j,l} S_{j,k} S^{-1}_{j,k})' \).

Given the results in this section, I restrict the set of strategies to those with linear pricing schemes that satisfy Corollary 3: \(\mathcal{A}^* = \{ \varsigma \in \mathcal{A} | \varsigma \) satisfies Corollary 3\}.

A.4 The Attention Problem of Firms

Take a strategy \(\varsigma \in \mathcal{A}^* \) such that \(\varsigma = (S_{j,k} \in \mathbb{S}^{n_{j,k}}, p_{j,k} = M'_{j,k}S_{j,k})_{j,k \in J \times K} \). For ease of notation let \(p(\varsigma_{j,k}) \equiv M'_{j,k}S_{j,k}, \forall j,k \in J \times K \). Also, let \(\varsigma_{-(j,k)} \equiv \varsigma_{j,k} \). Moreover, for any given firm \(j,k \in J \times K \), let \(\theta_{j,k}(\varsigma_{-(j,k)}) \equiv (\alpha, p(\varsigma_{j,l}))_{l \neq k}, (p(\varsigma_{n,n}))_{m \neq j,n \in K}' \) be the augmented vector of the fundamental, the prices of other firms in \(j,k \)'s industry, and the prices of all other firms in the economy. Define \(\mathbf{w} \equiv (1 - \alpha, \underbrace{\alpha}_{K-1 \text{ times}}, \underbrace{\alpha}_{(J-1) \times K \text{ times}}, 0, 0, \ldots, 0)' \). Also, for any \(\hat{\varsigma}_{j,k} \in \mathcal{A}_{j,k} \), let \(S(\hat{\varsigma}_{j,k}) \) denote the signals in \(\mathcal{S} \) that \(j,k \) observes under the strategy \(\hat{\varsigma}_{j,k} \). Given this notion observe that firm \(j,k \)'s problem, as defined in the text, reduces to

\[
\min_{\hat{\varsigma}_{j,k} \in \mathcal{A}_{j,k}} L_{j,k}(\hat{\varsigma}_{j,k}, \varsigma_{-(j,k)}) \equiv \mathbb{E}[(p(\hat{\varsigma}_{j,k}) - \mathbf{w}'\theta_{j,k}(\varsigma_{-(j,k)}))^2|S(\hat{\varsigma}_{j,k})]
\]

s.t. \(\mathcal{I}(S(\hat{\varsigma}_{j,k}); \theta_{j,k}(\varsigma_{-(j,k)})) \leq \kappa \),

where given the joint distribution of \((S(\hat{\varsigma}_{j,k}), \theta_{j,k}(\varsigma_{-(j,k)})) \), the mutual information is defined in Section A.1. It is also useful to restate the definition of the equilibrium given this notation:

Definition. An equilibrium is a strategy \(\varsigma \in \mathcal{A} \) such that \(\forall j,k \in J \times K \)

\[
\varsigma_{j,k} = \arg\min_{\hat{\varsigma}_{j,k} \in \mathcal{A}_{j,k}} L_{j,k}(\hat{\varsigma}_{j,k}, \varsigma_{-(j,k)}) \text{ s.t. } \mathcal{I}(S(\hat{\varsigma}_{j,k}); \theta_{j,k}(\varsigma_{-(j,k)})) \leq \kappa.
\]
The solution to this problem, if exists, is not unique. To show this, I define the following relation on the deviations of \(j, k \), given a strategy \(\varsigma \in \mathcal{A}^* \), and show that it is an equivalence.

Definition. For any two distinct elements \(\{s_{j,k}^1, s_{j,k}^2\} \subset \mathcal{A}_{j,k} \), and given \(\varsigma = (s_{j,k}, s_{-j,k}) \in \mathcal{A}^* \), we say \(s_{j,k}^1 \sim_{j,k} s_{j,k}^2 \) if \(L_{j,k}(s_{j,k}^1, s_{j,k}) = L_{j,k}(s_{j,k}^2, s_{j,k}) \), where \(L_{j,k}(\cdot, \cdot) \) is defined as in Equation (9). Note that \(\forall j, k \in \mathcal{J} \times \mathcal{K} \) and \(\forall \varsigma \in \mathcal{A}^* \), \(\sim_{j,k} \) is an equivalence relation as reflexivity, symmetry and transitivity are trivially satisfied by properties of equality.

By definition the agent is indifferent between elements of an equivalence class. Now, given \(\varsigma = (s_{j,k}, s_{-j,k}) \in \mathcal{A}^* \), let \(\hat{\varsigma}_{j,k} \equiv \{s_{j,k}' \in \mathcal{A}_{j,k} | s_{j,k}' \sim_{j,k} \hat{\varsigma}_{j,k}\} \). The following lemma shows there is always a deviation with a single dimensional signal that requires less attention.

Lemma 4. For any \(j, k \in \mathcal{J} \times \mathcal{K} \), \(\forall \varsigma = (s_{j,k}, s_{-j,k}) \in \mathcal{A}^* \), \(\exists \hat{\varsigma}_{j,k} \in [s_{j,k}]_\varsigma \) such that the agent observes only one signal under \(\hat{\varsigma}_{j,k} \) and \(\mathcal{I}(S(\hat{\varsigma}_{j,k}); \theta_{j,k}(s_{-j,k})) \leq \mathcal{I}(S(s_{j,k}); \theta_{j,k}(s_{-j,k})) \). Moreover, \(\hat{\varsigma}_{j,k} \) does not alter the covariance of firm \(j, k \)’s price with the fundamental and the prices of all other firms in the economy under \(\varsigma \).

Proof. I prove this lemma by constructing such an strategy. Given \(\varsigma \in \mathcal{A}^* \), let \(\Sigma_{\hat{\varsigma}_{j,k}} \equiv var(S(\hat{\varsigma}_{j,k})), \Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} \equiv cov(\theta_{j,k}(s_{-j,k}), S(\hat{\varsigma}_{j,k})) \) and \(\Sigma_{\theta_{j,k}} \equiv var(\theta_{j,k}(s_{-j,k})) \). Thus,

\[
(S(\hat{\varsigma}_{j,k}), \theta_{j,k}(s_{-j,k})) \sim \mathcal{N}(0, \begin{bmatrix} \Sigma_{\hat{\varsigma}_{j,k}} & \Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} \\ \Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} & \Sigma_{\theta_{j,k}} \end{bmatrix}).
\]

Moreover, since \(\varsigma \in \mathcal{A}^* \), then pricing strategies are linear, and by Corollary 3 \(p_{j,k}(\varsigma) = w'\mathbb{E}[\theta_{j,k}(s_{-j,k})]S(\hat{\varsigma}_{j,k}) = w'\Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} \Sigma_{\hat{\varsigma}_{j,k}}^{-1} S(\hat{\varsigma}_{j,k}) \). Notice that

\[
L_{j,k}(s_{j,k}, s_{-j,k}) = w'var(\theta_{j,k}(s_{-j,k})|S(\hat{\varsigma}_{j,k}))w = w'\Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} \Sigma_{\hat{\varsigma}_{j,k}}^{-1} \Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}}w.
\]

Now, let \(\hat{s}_{j,k} \equiv w'\Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} \Sigma_{\hat{\varsigma}_{j,k}}^{-1} S(\hat{\varsigma}_{j,k}) \). Clearly, \(\hat{s}_{j,k} \in \mathcal{S} \) as it is a finite linear combination of the elements of \(S(j,k) \), and \(\mathcal{S} \) is rich. Define \(\hat{\varsigma}_{j,k} \equiv (\hat{s}_{j,k}, 1) \in \mathcal{A}_{j,k} \). Notice that

\[
L_{j,k}(\hat{\varsigma}_{j,k}, s_{-j,k}) = w'var(\theta_{j,k}(s_{-j,k})|\hat{s}_{j,k})w = L_{j,k}(\hat{\varsigma}_{j,k}, s_{-j,k}).
\]

Thus, \(\hat{\varsigma}_{j,k} \in [s_{j,k}]_\varsigma \). Also, observe that \(\theta_{j,k}(s_{-j,k}) \perp \hat{s}_{j,k}|S(\hat{\varsigma}_{j,k}) \). Therefore, by the data processing inequality in Lemma 1, \(\mathcal{I}(\hat{s}_{j,k}; \theta_{j,k}(s_{-j,k})) \leq \mathcal{I}(S(\hat{\varsigma}_{j,k}); \theta_{j,k}(s_{-j,k})) \). Finally, observe that \(p_{j,k}(\hat{\varsigma}_{j,k}, s_{-j,k}) = p_{j,k}(\varsigma) = w'\Sigma_{\theta_{j,k}, \hat{\varsigma}_{j,k}} \Sigma_{\hat{\varsigma}_{j,k}}^{-1} S(\hat{\varsigma}_{j,k}) \). Thus, the covariance of \(j, k \)’s price with all the elements of \(\theta_{j,k}(s_{-j,k}) \) remains unchanged when \(j, k \) deviates from \(\varsigma_{j,k} \) to \(\hat{\varsigma}_{j,k} \).

□

A.5 Equilibrium Signals

Let \(\mathcal{E} \equiv \{\varsigma \in \mathcal{A}|\varsigma \) is an equilibrium as stated in Statement (10)\} denote the set of equilibria for the game. The following definition states an equivalence relation among the equilibria.

Definition. Suppose \(\{s_1, s_2\} \subset \mathcal{E} \). We say \(s_1 \sim_{\mathcal{E}} s_2 \) if they imply the same joint distribution for prices of firms and the fundamental. Formally, \(s_1 \sim_{\mathcal{E}} s_2 \) if given that \((q, p_{j,k}(s_1))_{j,k \in \mathcal{J} \times \mathcal{K}} \sim G \), then \((q, p_{j,k}(s_2))_{j,k \in \mathcal{J} \times \mathcal{K}} \sim G \) as well. This is trivially an equivalence relation as it satisfies reflexivity, symmetry and transitivity by properties of equality.
Lemma 5. Let $A^{**} \equiv \{ \varsigma \in A | \varsigma = (s_{j,k} \in S, 1)_{j,k \in J \times K} \}$. Suppose $\varsigma \in A$ is an equilibrium for the game. Then, there exists $\hat{\varsigma} \in A^{**}$ such that $\hat{\varsigma} \sim_{\varsigma} \varsigma$.

Proof. The proof is by construction. Since ς is an equilibrium it solves all firms problems. Start from the first firm in the economy and perform the following loop for all firms: we know firm 1, 1 has a strategy $\hat{\varsigma}_{1,1} = (s_{1,1} \in S, 1)$ that is equivalent to $\varsigma_{1,1}$ given ς. Create a new strategy $\varsigma^{1,1} = (\hat{\varsigma}_{1,1}, \varsigma_{-(1,1)})$. We know that $\varsigma^{1,1}$ implies the same joint distribution as ς for the prices of all firms in the economy because we have only changed firm 1, 1’s strategy, and by the previous lemma $\hat{\varsigma}_{1,1}$ does not alter the the joint distribution of prices. Now notice that $\varsigma^{1,1}$ is also an equilibrium because (1) firm 1, 1 was indifferent between $\varsigma_{1,1}$ and $\hat{\varsigma}_{1,1}$ and (2) the problem of all other firms has not changed because 1, 1’s price is the same under both strategies. Now, repeat the same thing for firm 1, 2 given $\varsigma^{1,1}$ and so on. At any step given $\varsigma^{j,k}$ repeat the process for $j, k + 1$ (or $j + 1, 1$ if $k = K$) until the last firm in the economy. At the last step, we have $\varsigma^{J,K} = (\hat{\varsigma}_{j,k})_{j,k \in J \times K}$, which is (1) an equilibrium and (2) implies the same joint distribution among prices and fundamentals as ς. Moreover, notice that $\varsigma^{J,K} \in A^{**}$.

So far we have shown that any equilibrium has an equivalent in A^{**}, so as long as we are interested in the joint distribution of prices and the fundamental it suffices to only look at equilibria in this set. The next lemma shows that given any strategy $\varsigma \in A^{**}$, for any $j, k \in J \times K$, the set of j, k’s deviations is equivalent to choosing a joint distribution between their price and $\theta_{j,k}(\varsigma_{-(j,k)})$.

Lemma 6. Suppose $\varsigma \in A^{**}$ is an equilibrium. Then, $\forall j, k \in J \times K$, any deviation for j, k is equivalent to a Gaussian joint distribution between their price and $\theta_{j,k}(\varsigma_{-(j,k)})$. Moreover, if two different deviations of j, k imply the same joint distribution for prices and the fundamental, they both require the same amount of attention and the firm is indifferent between.

Proof. Given ς, let $\Sigma_{\theta_{j,k}}$ be such that $\theta_{j,k}(\varsigma_{-(j,k)}) \sim N(0, \Sigma_{\theta_{j,k}})$. Notice that $\Sigma_{\theta_{j,k}}$ has to be invertible: if not, then there must a firm whose signal is either co-linear with the fundamental or the signal of another firm, meaning that their signal is perfectly correlated with one of those. But that violates the capacity constraint of that firm as they are processing infinite capacity, which is a contradiction with the assumption that ς is an equilibrium.\footnote{Recall, for any two one dimensional Normal random variables X and Y, $I(X,Y) = -\frac{1}{2} \log_{2}(1 - \rho_{X,Y}^2)$, where $\rho_{X,Y}$ is the correlation of X and Y. Notice that $\lim_{\rho \to 1} I(X,Y) \to +\infty$.}

Now, from Lemma 4 we know that it suffices to look at deviations of the form $(s_{j,k} \in S, 1)$. First, observe that any deviation of the firm j, k creates a Gaussian joint distribution for $(s_{j,k}, \theta_{j,k}(\varsigma_{-(j,k)}))$ as $s_{j,k} \in S$. Moreover, suppose $G = N(0, \begin{bmatrix} x & y' \\ y & \Sigma_{\theta_{j,k}} \end{bmatrix})$ is a Gaussian distribution. Since $\Sigma_{\theta_{j,k}}$ is invertible, Corollary 2 implies that there is a signal $s_{j,k} \in S$, such that $(s_{j,k}, \theta_{j,k}(\varsigma_{-(j,k)})) \sim G$.

For the last part of the lemma, suppose for two different signals $s^{1}_{j,k}$ and $s^{2}_{j,k}$ in S, $(s^{1}_{j,k}, \theta_{j,k}(\varsigma_{-(j,k)}))$ and $(s^{2}_{j,k}, \theta_{j,k}(\varsigma_{-(j,k)}))$ have the same joint distribution. Then,

$$\text{var}(\theta_{j,k}(\varsigma_{-(j,k)})|s^{1}_{j,k}) = \text{var}(\theta_{j,k}(\varsigma_{-(j,k)})|s^{2}_{j,k})$$

41Recall, for any two one dimensional Normal random variables X and Y, $I(X,Y) = -\frac{1}{2} \log_{2}(1 - \rho_{X,Y}^2)$, where $\rho_{X,Y}$ is the correlation of X and Y. Notice that $\lim_{\rho \to 1} I(X,Y) \to +\infty$. 49
Thus, \(L_{j,k}(s^1_{j,k}, 1), \zeta_{(j,k)} = L_{j,k}(s^2_{j,k}, 1), \zeta_{(j,k)} \). Moreover, given that the conditional variances under both signals are the same we have:

\[
\mathcal{I}(s^1_{j,k}; \theta_{j,k}(\zeta_{(j,k)})) = \mathcal{I}(s^2_{j,k}; \theta_{j,k}(\zeta_{(j,k)})).
\]

Therefore, the firm is indifferent between \(s^1_{j,k} \) and \(s^2_{j,k} \). \(\square \)

This last lemma ensures us that instead of considering all the possible deviations in \(S \), we can look among all the possible joint distributions. If there is a joint distribution that solves a firm’s problem, then the lemma implies that there is a signal in the set of available signals that creates that joint distribution.

Lemma 7. Suppose \(\zeta = (s^*_{j,k} \in S, 1) \in \mathcal{A}^{**} \) is an equilibrium, then \(\forall j, k \in J \times K \),

\[
s^*_{j,k} = \lambda w' \theta_{j,k}(\zeta_{(j,k)}) + z_{j,k}, z_{j,k} \perp \theta_{j,k}(\zeta_{(j,k)}), \quad \text{var}(z_{j,k}) = \lambda(1 - \lambda) \text{var}(w' \theta_{j,k}(\zeta_{(j,k)})).
\]

Proof. For firm \(j, k \in J \times K \), let \(\Sigma_{\theta_{j,k}} \) denote the covariance matrix of \(\theta_{j,k}(\zeta_{(j,k)}) \). From Lemma 4 it is sufficient to look at deviations of the form \((s_{j,k} \in S, 1) \). For a given \(s_{j,k} \in S \),

\[
(s_{j,k}, \theta_{j,k}(\zeta_{(j,k)})) \sim \mathcal{N}(0, \Sigma_{s_{j,k}, \theta_{j,k}}), \quad \text{where } \Sigma_{s_{j,k}, \theta_{j,k}} = \begin{bmatrix} x^2 & y' \\ y & \Sigma_{\theta_{j,k}} \end{bmatrix} \succeq 0.
\]

First, recall that for \((s_{j,k} \in S, 1) \) to be optimal, it has to be the case that

\[
p_{j,k} = w' \mathbb{E}[\theta_{j,k}(\zeta_{(j,k)})|s_{j,k}] = x^{-2}w'y s_{j,k}.
\]

Thus,

\[
x^2 = w'y.
\]

Now, given \(s_{j,k} \in S \), the firm’s loss in profits is \(\text{var}(w' \theta_{j,k}(\zeta_{(j,k)})|s_{j,k}) = w' \Sigma_{\theta_{j,k}} w - x^{-2}(w'y)^2 \) and the capacity constraint is \(\frac{1}{2} \log_2(1 - x^{-2} \Sigma_{\theta_{j,k}}^{-1} y y') \geq -\kappa \leftrightarrow x^{-2}y' \Sigma_{\theta_{j,k}}^{-1} y \leq \lambda \equiv 1 - 2^{-2\kappa}. \)

Moreover, from the previous lemma we know that for any \((x, y) \) such that \(\begin{bmatrix} x^2 & y' \\ y & \Sigma_{\theta_{j,k}} \end{bmatrix} \succeq 0 \), then there is a signal in \(S \) that creates this joint distribution. Therefore, we let the agent choose \((x, y) \) freely to solve

\[
\min_{(x, y)} w' \Sigma_{\theta_{j,k}} w - x^{-2}(w'y)^2 s.t. x^{-2}y' \Sigma_{\theta_{j,k}}^{-1} y \leq \lambda.
\]

The solution can be derived by taking first order conditions, but there is simpler a way. Notice that by Cauchy-Schwarz inequality

\[
x^{-2}(w'y)^2 = x^{-2}(\Sigma_{\theta_{j,k}}^{\frac{1}{2}} w y') (\Sigma_{\theta_{j,k}}^{-\frac{1}{2}} y) \leq x^{-2}(w' \Sigma_{\theta_{j,k}} w)(y' \Sigma_{\theta_{j,k}}^{-1} y).
\]

Therefore,

\[
w' \Sigma_{\theta_{j,k}} w - x^{-2}(w'y)^2 \geq (w' \Sigma_{\theta_{j,k}} w)(1 - x^{-2}y' \Sigma_{\theta_{j,k}} y) \geq (1 - \lambda)w' \Sigma_{\theta_{j,k}} w,
\]

where, the last line is from the capacity constraint. This defines a global lower-bound for the objective of the firm that holds for any choice of \((x, y) \). However, this global minimum is attained if both the Cauchy-Schwarz inequality and the capacity constraint bind. From the properties of the Cauchy-Schwarz inequality, we know it binds if and only if

\[
x^{-1} \Sigma_{\theta_{j,k}}^{-\frac{1}{2}} y = c_0 \Sigma_{\theta_{j,k}}^{\frac{1}{2}} w
\]

for some constant \(c_0 \). Therefore, there is a unique vector \(x^{-1} y \) that attains the global minimum of the agent’s problem given their constraint: \(x^{-1} y = c_0 \Sigma_{\theta_{j,k}}^{\frac{1}{2}} w \). Now, the capacity constraint constraint binds if

\[
c_0 = \sqrt{\frac{\lambda}{w' \Sigma_{\theta_{j,k}} w}}.
\]

Together with \(x^2 = w'y \), this gives us the unique \((x, y): y = \lambda \Sigma_{\theta_{j,k}} w, \quad x = \sqrt{\lambda w' \Sigma_{\theta_{j,k}} w} \). Finally, to find a signal that creates this joint
distribution, choose $s^*_{j,k} \in \mathcal{S}$ such that
\[s^*_{j,k} = \lambda w' \theta_{j,k}(\varsigma_{-(j,k)}) + z_{j,k}, \quad z_{j,k} \perp \theta_{j,k}(\varsigma_{-(j,k)}), \quad \text{var}(z_{j,k}) = \lambda(1 - \lambda)w' \Sigma_{\theta_{j,k}} w. \]

notice that $\text{cov}(s^*_{j,k}, \theta_{j,k}(\varsigma_{-(j,k)})) = \lambda \Sigma_{\theta_{j,k}} w$, and $\text{var}(s^*_{j,k}) = \lambda w' \Sigma_{\theta_{j,k}} w$. Notice that this implies the equilibrium set of signals are
\[s^*_{j,k} = \lambda(1 - \alpha)q + \lambda \alpha \frac{1}{K - 1} \sum_{l \neq k} s^*_{j,l} + z_{j,k}, \quad z_{j,k} \perp (q, s_{m,n})_{(m,n) \neq (j,k)} \]

where $\text{var}(z_{j,l}) = \lambda(1 - \lambda)\text{var}((1 - \alpha)q + \alpha \frac{1}{K - 1} \sum_{l \neq k} s^*_{j,l})$. \(\square\)

A.6 Uniqueness of Equilibrium in Joint Distribution of Prices

Having specified the equilibrium signals, I now show that all equilibria imply the same joint distribution of prices.

Lemma 8. Suppose $\alpha \in [0, 1)$. Then, $\mathcal{E} / \sim_{\mathcal{E}}$ is non-empty and a singleton.

Proof. I show this by directly characterizing the equilibrium. From previous section we know that any equilibrium is equivalent to one in strategies of \mathcal{A}^*. Suppose that $(s^*_{j,k}, 1)_{j,k \in J \times K} \in \mathcal{A}^*$ is an equilibrium, and notice that in this equilibrium every firm simply sets their price equal to their signal, $p_{j,k} \equiv s^*_{j,k}$. Also, Lemma 8 showed that this equilibrium signals should satisfy the following
\[p_{j,k} = \lambda(1 - \alpha)q + \lambda \alpha \frac{1}{K - 1} \sum_{l \neq k} p_{j,l} + z_{j,k}, \quad z_{j,k} \perp (q, p_{m,n})_{(m,n) \neq (j,k)} \]

where $\text{var}(z_{j,l}) = \lambda(1 - \lambda)\text{var}((1 - \alpha)q + \alpha \frac{1}{K - 1} \sum_{l \neq k} p_{j,l})$. Now, we want to find all the joint distributions for $(q, p_{j,k})_{j,k \in J \times K}$ that satisfy this rule. Since all signals are Gaussian, the joint distributions will also be Gaussian.

I start by characterizing the covariance of any firm’s price with the fundamental. For any industry j, let $p_j \equiv (p_{j,k})_{k \in K}$ and $z_j \equiv (z_{j,k})_{k \in K} \perp q$. Moreover, for ease of notation in this section let $\gamma \equiv \frac{1}{K - 1}$. Now, the equilibrium condition implies $p_j = \lambda(1 - \alpha)1q + \lambda \alpha \gamma(11' - I)p_j + z_j$ where 1 is the unit vector in \mathbb{R}^K, and I is identity matrix in $\mathbb{R}^{K \times K}$ (therefore $11' - I$ is a matrix with zeros on diagonal and 1’s elsewhere). With some algebra it is straightforward to show that $\text{cov}(p_j, q) = \frac{2 - \lambda\alpha}{1 - \lambda\alpha} 1$. Thus, in any equilibrium, the covariance of any firm’s price with the fundamental q has to be equal to $\delta \equiv \frac{2 - \lambda\alpha}{1 - \lambda\alpha}$.

Next, I show that for any two firms in two different industries, their prices are orthogonal conditional on the fundamental. Let p_j be the vector of prices in industry j as defined above. Pick any firm from any other industry $l, m \in J \times K, l \neq j$. Notice that by the equilibrium conditions $z_j \perp p_{l,m}$. Now, notice that
\[\text{cov}(p_j, p_{l,m}) = \lambda(1 - \alpha)1 \text{cov}(q, p_{l,m}) + \lambda \alpha \gamma (11' - I) \text{cov}(p_j, p_{l,m}) + \text{cov}(z_j, p_{l,m}). \]
With some algebra, we get \(\text{cov}(p_j, p_m) = \delta^2 1 \Rightarrow \text{cov}(p_j, p_m|q) = 0 \). Therefore, in any equilibrium prices of any two firms in two different industries are only correlated through the fundamental. This implies that firms do not pay attention to mistakes of firms in other industries. Now we only need to specify the joint distribution of prices within industries. We have \(p_j = B(\lambda(1-\alpha)1q + z_j) \) where \(B = \frac{1}{1+\alpha \gamma} I + \frac{\alpha \lambda}{(1+\alpha \gamma)(1-\alpha)} 11' \). This gives \(p_j = \delta 1 q + B z_j \), where \(z_j = q \). This corresponds to the decomposition of the prices of firms to parts that are correlated with the fundamental and their mistakes. The vector \(B z_j \) is the vector of firms’ mistakes in industry \(j \), and is the same as the vector \(v_j \) in the text. Let \(\Sigma_{z,j} = \text{cov}(z_j, z_j) \) and \(\Sigma_{p,j} = \text{cov}(p_j, p_j) \). We have \(\Sigma_{p,j} = \delta^2 11' + B \Sigma_{z,j} B' \). Also, since \(z_{j,k} \perp p_{j,l}, \) we have \(\mathbf{D}_j = \text{cov}(p_j, z_j) = B \Sigma_{z,j} \) where \(\mathbf{D}_j \) is a diagonal matrix whose \(k \)'th element on the diagonal is \(\text{var}(z_{j,k}) \). From the equilibrium conditions we have

\[
\text{var}(z_{j,k}) = \lambda(1-\lambda)\text{var}((1-\alpha)q + \alpha \gamma \sum_{l \neq k} p_{j,l}) = \lambda(1-\lambda)(1-\alpha)^2 + \lambda(1-\lambda)\alpha^2 \gamma^2 w_k' \Sigma_{p,j} w_k + 2\lambda(1-\lambda)\alpha(1-\alpha)\delta
\]

where \(w_k \) is a vector such that \(w_k p_j = \sum_{l \neq k} p_{j,l} \). This gives \(K \) linearly independent equations and \(K \) unknowns in terms of the diagonal of \(\mathbf{D}_j \). Guess that the unique solution to this is symmetric. After some tedious algebra, we get that the implied distribution for prices is such that

\[
\text{var}(p_{j,k}) = \frac{1-\alpha \lambda}{1-\alpha \lambda} \lambda^{-2}, \forall j, k; \text{cov}(p_{j,k}, p_{j,l}) = \frac{1-\alpha \lambda}{1-\alpha \lambda} \delta^2, \forall j, k, l \neq k;
\]

where \(\bar{\lambda} \equiv \frac{1+\alpha \gamma \lambda}{1+\alpha \gamma \lambda} \).

\[\Box\]

A.7 Reinterpretation of a Firm’s Attention Problem.

Take any firm \(j, k \in J \times K \), and suppose all other firms in the economy are playing the equilibrium strategy. Moreover, here I take it as given that the firm does not pay attention to mistakes of firms in other industries: \(\text{cov}(p_{j,k}, p_{l,m}|q)_{l \neq j} = 0 \). Now, take strategy \(s_{j,-k} \) for other firms and decompose the average price of others such that \(p_{j,-k}(s_{j,-k}) = \frac{1}{K-1} \sum_{l \neq k} p_{j,l}(s_{j,l}) = \delta q + v_{j,-k} \), where \(\delta \) and the joint \(\text{var}(v_{j,-k}) \) is implied by \(s_{j,-k} \). Let \(\sigma^2_v \equiv \text{var}(v_{j,-k}) \) be the variance of the average mistake of other firms in \(j, k \)'s industry when they play the strategy. For \(s_{j,k} \in \mathcal{S} \), and define \(\rho_q(s_{j,k}) \equiv \text{cor}(s_{j,k}, q) \), \(\rho_v(s_{j,k}) \equiv \text{cor}(s_{j,k}, v_{j,-k}) \). Notice that firm \(j, k \)'s loss in profit given that they observe \(s_{j,k} \) is

\[
\text{var}((1-\alpha)q + \alpha p_{j,-k}|s_{j,k}) = (1-\alpha + \alpha \delta)^2 \text{var}(q + \frac{\alpha}{1-\alpha(1-\delta)} v_{j,-k}|s_{j,k}).
\]

With some algebra, it is straightforward to show that

\[
\text{var}(q + \frac{\alpha}{1-\alpha(1-\delta)} v_{j,-k}|s_{j,k}) = 1 + (\frac{\alpha}{1-\alpha(1-\delta)})^2 \sigma^2_v - (\rho_q(s_{j,k}) + \frac{\alpha \sigma_v}{1-\alpha(1-\delta)} \rho_v(s_{j,k}))^2.
\]

52
Now, to derive the information constraint in terms of the two correlations: \(\mathcal{I}(s_{j,k}; (q, p_{j,-k}^2)) \leq \kappa \Leftrightarrow \frac{1}{2} \log_2 \left(\frac{\text{var}(s_{j,k})}{\text{var}(s_{j,k} | q, p_{j,-k}^2)} \right) \leq \kappa. \) Notice that \(\frac{\text{var}(s_{j,k} | q, p_{j,-k}^2)}{\text{var}(s_{j,k})} = 1 - (\rho_q(s_j)^2 + \rho_v(s_j)^2) \). Thus, the information constraint becomes \(\rho_q^2(s_j) + \rho_v^2(s_j) \leq \lambda \equiv 1 - 2^{-2 \kappa}. \) So \(j, k \)'s problem reduces to

\[
\max_{\rho_q, \rho_v}(\rho_q(s_j) + \rho_v(s_{j,k})) = \frac{\alpha \sigma_v}{1 - \alpha (1 - \delta)} \rho_v(s_{j,k})^2 \text{ s.t. } \rho_q(s_{j,k})^2 + \rho_v(s_{j,k})^2 \leq \lambda.
\]

The problem reduces to choosing correlations as the information set is rich: for any pair of \((\rho_q, \rho_v) \in [-1, 1]^2\), there is a signal in \(S \) that generates that pair.

A.8 Proofs of Propositions for the Static Model

Here I include the proofs of Propositions 1 to 3. The proofs and derivations for Section 4 are included in Appendix B.

Proof of Proposition 1.

1. Given the result in Lemma 8, notice that since attention is strictly increasing in the squared correlation: \(\rho_q^2 = \frac{\text{cov}(p_{j,k}, q)^2}{\text{var}(p_{j,k})} = \frac{K-1+\alpha \delta}{K-1+\alpha \lambda} \lambda. \) However, notice that \(\delta = \frac{1-\alpha}{1-\alpha \lambda} \lambda \) as long as \(\lambda > 0 \) and \(\alpha > 0 \). This implies directly that \(\rho_q^2 < \lambda \). Thus, \(\rho_q^2 = \lambda - \rho_q^2 > 0 \), meaning that firms pay attention to the mistakes of their competitors.

2. From the previous part, notice that \(\frac{\partial \rho_q^2}{\partial \alpha} \frac{1}{\rho_q^2} = \frac{(K-1)(\delta - \lambda) + (K-1 + \alpha \lambda)\alpha \delta}{(K-1 + \alpha \delta)(K-1 + \alpha \lambda)} < 0. \) Also

\[
\frac{\partial \rho_q^2}{\partial \alpha} \frac{1}{\rho_q^2} = \frac{(K-1)(\delta - \lambda) + (K-1 + \alpha \lambda)\alpha \delta}{(K-1 + \alpha \delta)(K-1 + \alpha \lambda)} < 0.
\]

The inequality comes from \(\delta - \lambda < 0 \) and \(\frac{\delta \lambda}{\delta \alpha} = \frac{(1-\alpha)(1-\alpha \lambda)}{(1-\alpha \lambda)(1-\alpha \lambda)} < 0. \)

Proof of Proposition 2.

First of all notice that the aggregate price is given by

\[
p = \delta q + \frac{1}{JK} \sum_{j,k} v_{j,k}.
\]

Since \(J \) is large and \(v_{j,k} \)'s are independent across industries, the average converges to zero by law of large numbers as \(J \to \infty \). Therefore, \(p = \delta q \). Moreover, \(E^{j,k}[p_{j,-k}] = \frac{\text{cov}(s_{j,k}, p_{j,-k})}{\text{var}(p_{j,k})} s_{j,k} = \lambda p_{j,k} \) and \(E^{j,k}[p] = \frac{\text{cov}(s_{j,k}, p)}{\text{var}(p_{j,k})} p_{j,k} = \frac{1-\alpha \lambda}{1-\alpha \lambda} \lambda p_{j,k} \) where \(\lambda = \frac{\lambda(K-1)+\alpha \lambda}{K-1+\alpha \lambda} > \lambda \) is defined as in the proof of Lemma 8. So, \(E^{j,k}[p_{j,-k}] = \lambda p, E^{j,k}[p] = \frac{1-\alpha \lambda}{1-\alpha \lambda} \lambda p. \) Finally,

\[
\text{cov}(E^{j,k}[p_{j,-k}], p) = \tilde{\lambda} \text{var}(p) > \frac{1-\alpha \lambda}{1-\alpha \lambda} \text{var}(p) = \text{cov}(E^{j,k}[p], p).
\]

Also, if \(K \to \infty \) then \(\tilde{\lambda} \to \lambda \) and \(\text{cov}(E^{j,k}[p], p) \to \text{cov}(E^{j,k}[p_{j,-k}], p) \).
Proof of Corollary 1.

Conditional on realization of the aggregate price \(|p - \mathbb{E}j,k[p]| = (1 - \frac{1 - \alpha\tilde{\lambda}}{1 - \alpha\lambda})|p| > (1 - \tilde{\lambda})|p| = |p - \mathbb{E}j,k[p_{j,-k}]| \).

Proof of Proposition 3.

Since knowledge is directly related to mutual information (as defined in Definition 3), and mutual information in this static setting reduces to correlations, we need to show \(\text{cor}(p_{j,k}, p_{j,-k}) \geq \text{cor}(p_{j,k}, q) = \text{cor}(p_{j,k}, p) \). By plugging in the unique equilibrium distribution from the proof of Lemma 8, we get this holds if and only if \(\frac{1 - \alpha\tilde{\lambda}}{1 - \alpha\lambda} \leq \frac{(K-1)\tilde{\lambda}^2}{1+(K-2)\lambda} \). Moving the terms around, this can be rearranged to \(\alpha\tilde{\lambda} \geq \frac{1}{2} \), meaning that the necessary and sufficient condition for the result is when this inequality holds. Now, notice that if \(\alpha\lambda \geq \frac{1}{2} \), since \(\tilde{\lambda} \geq \lambda \), then \(\alpha\tilde{\lambda} \geq \frac{1}{2} \). Hence, \(\alpha\lambda \geq \frac{1}{2} \) is a sufficient condition.

B Derivations and Proofs for the Dynamic Model

The Appendix is organized as follows. Subsection B.1 extends the set of available information defined in Appendix A.2 to the dynamic environment. Subsection B.2 includes all the derivations for the dynamic model that are omitted in the main text. Subsection B.3 discusses the degree of strategic complementarity implied by the Kimball aggregator. Subsection B.4 contains the proofs of the Propositions 4, 5 and 6. Subsection B.5 discusses the computational method that I use for solving the dynamic model.

B.1 Available Information in the Dynamic Model

The set of available signals in the dynamic model is an extension of the one defined in Appendix A.2. The main difference is the notion of time and the fact that at every period nature draws new shocks and the set of available information in the economy expands. To capture this evolution, I define a signal structure as a sequence of sets \((S^t)_{t=-\infty}^{\infty} \) where \(S^{t-s} \subset S^t, \forall s \geq 0 \). Here, \(S^t \) denotes the set of available signals at time \(t \), and it contains all the previous sets of signals that were available in previous periods.

To construct the signal structure, suppose that at every period, in addition to the shock to the nominal demand, the nature draws countably infinite uncorrelated standard normal noises. Similar to Appendix A.2, let \(S_t \) be the set of all finite linear combinations of these uncorrelated noises. Now, define \(S^t = \{ \sum_{s=0}^{\infty} a_s e_{t-s} | \forall \tau \geq 0, a_s \in \mathbb{R}, e_{t-\tau} \in S_{t-\tau} \} \), \(\forall t \). First of all, notice that for all \(t, q_t \in S^t \), as it is a linear combination of all \(u_{t-\tau} \)'s and \(u_{t-\tau} \in S_{t-\tau} \), \(\forall \tau \geq 0 \). This implies that perfect information is available about the fundamental in the economy.
B.2 Derivations

Solution to Household’s Problem (4).

Let $\beta^{t_i} \varphi_{1,t}$ and $\beta^{t_j} \varphi_{2,t}$ be the Lagrange multipliers on household’s budget and aggregation constraints, respectively.

For ease of notation let $C_{j,t} \equiv (C_{j,1,t}, \ldots, C_{j,K,t})$ be the vector of household’s consumption from firms in industry $j \in J$, so that $C_{j,t} \equiv \Phi(C_{j,t})$. First, I derive the demand of the household for different goods. $\forall j, k \in J \times K$ the first order condition with respect to $C_{j,k,t}$ is

$$P_{j,k,t} = \frac{1}{J} \frac{\varphi_{2,t}}{\varphi_{1,t}} \Phi_k(C_{j,t})$$ \hspace{1cm} (11)

where $\Phi_k(C_{j,t}) \equiv \frac{\partial \Phi(C_{j,t})}{\partial C_{j,k,t}}$. Notice that given these optimality conditions $\sum_{(j,k) \in J \times K} P_{j,k,t} C_{j,k,t} = 1 \varphi_{2,t} C_t \sum_{j \in J} \sum_{k \in K} \Phi_k(C_{j,t}) C_{j,k,t} = \varphi_{2,t} C_t$, where the equality under curly bracket is from Euler theorem for homogeneous functions as $\Phi(.)$ is CRS. Therefore, $P_t \equiv \frac{\varphi_{2,t}}{\varphi_{1,t}}$ is the price of the aggregate consumption basket C_t. Now, from Equation (11), $P_{j,t} \equiv (P_{j,1,t}, \ldots, P_{j,K,t}) = \nabla \log(\Phi(C_{j,t}/P_{C_{j,t}}))$. I need to show that this function is invertible to prove that a demand function exists. For ease of notation, define function $f : \mathbb{R}^K \to \mathbb{R}^K$ such that $f(x) \equiv \nabla \log(\Phi(x))$. Notice that $f(.)$ is homogeneous of degree -1, and the m,n’th element of its Jacobian, denoted by matrix $J^f(x)$, is given by $J^f_{m,n}(x) \equiv \frac{\partial}{\partial x_m} \frac{\Phi_m(x)}{\Phi(x)} = \frac{\Phi_m(x) \Phi_n(x) - \Phi_n(x) \Phi_m(x)}{\Phi(x)}$. Let $\mathbf{1}$ be the unit vector in \mathbb{R}^K. Since $\Phi(.)$ is symmetric along its arguments, for any $k \in (1, \ldots, K)$, $\Phi_1(1) = \Phi_k(1)$, $\Phi_{11}(1) = \Phi_{kk}(1) < 0$. Since $\Phi(.)$ is homogeneous of degree 1, by Euler’s theorem we have $\Phi(1) = \sum_{k \in K} \Phi_k(1) = K \Phi_1(1)$. Also, since $\Phi_k(.)$ is homogeneous of degree zero.\footnote{Follows from homogeneity of $\Phi(x)$. Notice that $\Phi(ax) = a \Phi(x)$. Differentiate with respect to k’th argument to get $\Phi_k(ax) = \Phi_k(x)$.} Similarly we have $0 = 0 \times \Phi_k(1) = \sum_{l \in K} \Phi_{kl}(1)$. So, for any $l \neq k$, $\Phi_{kl}(1) = -\frac{1}{K-1} \Phi_{11}(1) > 0$. This last equation implies that $J^f(1)$ is an invertible matrix.\footnote{With some algebra, we can show that $J^f(1) = \frac{\Phi_{11}(1)}{K-1} \mathbf{1} - \frac{\Phi_{11}(1)+K-1}{K(K-1)} \mathbf{1}$, meaning that $J^f(1)$ is a symmetric matrix whose diagonal elements are strictly different than its off-diagonal elements. Hence, it is invertible.}

Therefore, by inverse function theorem $f(.)$ is invertible in an open neighborhood around $\mathbf{1}$, and therefore any symmetric point $x = x \mathbf{1}$ such that $x > 1$. We can write $C_{j,t} = f^{-1}(P_{j,t})$. It is straightforward to show that $f^{-1}(.)$ is homogeneous of degree -1 because $f(x)$ is homogeneous of degree -1: for any $x \in \mathbb{R}^K$, $f^{-1}(ax) = f^{-1}(a f^{-1}(x)) = f^{-1}(a^{-1} f^{-1}(x)) = a^{-1} f^{-1}(x)$. Now, $C_{j,k,t} = J^{-1} P_t C_t f^{-1}(P_{j,t})$, where $f^{-1}(x)$ is the k’th element of the vector $f^{-1}(P_{j,t})$. Finally, since $f(.)$ is symmetric across its arguments, so is $f^{-1}(P_{j,t})$, meaning that $f^{-1}(P_{j,t}) = f^{-1}_{k1} (\sigma_{k1}(P_{j,t}))$, where $\sigma_{k1}(P_{j,t})$ is a permutation that changes the places of the first and k’th element of the vector $P_{j,t}$. Now, to get the notation in the text let $(P_{j,k,t}, P_{j,-k,t}) \equiv \sigma_{k1}(P_{j,t})$ and $D(x) \equiv J^{-1} f_{11}^{-1}(x)$, which gives us the notation in the text: $C_{j,k,t} = P_t C_t D(P_{j,k,t}, P_{j,-k,t})$, where $D(\ldots)$ is homogeneous of degree -1. Finally, the optimality conditions of the household’s problem with respect to B_t, C_t and L_t are straight
forward and are given by \(P_tC_t = \beta(1 + i_t)E_t^f[P_{t+1}C_{t+1}] \) and \(\phi P_tC_t = W_t \).

Loss Function of the Firms.

Let \(\Pi(P_{j,k,t}, P_{j,-k,t}, W_t) = (P_{j,k,t} - (1 - s)W_t)D(P_{j,k,t}, P_{j,-k,t}) \) denote the profit function of the firm following the text. Notice that this function is homogeneous of degree 1 as \(D(\cdot, \cdot) \) is homogeneous of degree -1. Now for any given set of signals over time that firm \(j, k \) could choose to see, its profit maximization problem is

\[
\max_{(P_{j,k,t}, P_{j,-k,t})} \mathbb{E}[\sum_{t=0}^{\infty} \beta^t Q_0 \Pi(P_{j,k,t}, P_{j,-k,t}, W_t)] S_{j,k}^{-1].
\]

Define the loss function of firm from mispricing at a certain time as

\[
L(P_{j,k,t}, P_{j,-k,t}, W_t) \equiv \Pi(P^*, P_{j,-k,t}, W_t) - \Pi(P_{j,k,t}, P_{j,-k,t}, W_t),
\]

where \(P^*_{j,k,t} = \arg\max_x \Pi(x, P_{j,-k,t}, W_t) \). Note that

\[
\min_{(P_{j,k,t}, P_{j,-k,t})} \mathbb{E}[\sum_{t=0}^{\infty} \beta^t Q_0 L(P_{j,k,t}, P_{j,-k,t}, W_t)] S_{j,k}^{-1]
\]

has the same solution as profit maximization problem of the firm because \(L(\cdot, \cdot) \) is also homogeneous of degree 1 and \(\sum_{t=0}^{\infty} \beta^t Q_0 \max_x \Pi(x, P_{j,-k,t}, W_t) \) is independent of \((P_{j,k,t})_t=0 \). Now, I take a second order approximation to

\[
\mathcal{L}[(P_{j,k,t}, P_{j,-k,t}, Q_t, W_t)_{t=0}^{\infty}] \equiv \sum_{t=0}^{\infty} \beta^t Q_0 L(P_{j,k,t}, P_{j,-k,t}, W_t)
\]

around a symmetric point where \(\forall t, P_{j,k,t} = P_{j,t,t}|_{t \neq k} = \bar{P}, W_t = \phi \bar{Q} \) such that \(\bar{P} = \arg\max_x \Pi(x, \bar{P}, \phi) \). For any of variables above let its corresponding small letter denote percentage deviation of that variable from this symmetric point \((q_t \equiv \frac{Q_t - \bar{Q}}{\bar{Q}} \text{ and so on). Observe that up to second order terms}

\[
L(P_{j,k,t}, P_{j,-k,t}, W_t) \approx L(\bar{P}, \bar{P}, \phi \bar{Q}) + (p^*_{j,k,t} - p_{j,k,t}) \bar{P} \frac{\partial}{\partial P_{j,k,t}} \Pi(\bar{P}, \bar{P}, \phi \bar{Q})
\]

\[
+ \frac{1}{2}(p^*_{j,k,t} - p_{j,k,t})^2 \frac{\partial^2}{\partial P_{j,k,t}^2} \Pi(\bar{P}, \bar{P}, \phi \bar{Q})
\]

\[
+ (p^*_{j,k,t} - p_{j,k,t}) \sum_{l
eq k} p_{j,l,t} \bar{P} \frac{\partial}{\partial P_{j,k,t}} \partial P_{j,l,t} \Pi(\bar{P}, \bar{P}, \phi \bar{Q})
\]

\[
+ (p^*_{j,k,t} - p_{j,k,t}) w_t \phi \bar{Q} \bar{P} \frac{\partial}{\partial W_t} \Pi(\bar{P}, \bar{P}, \phi \bar{Q}).
\]

But notice that \(L(\bar{P}, \bar{P}, \phi \bar{Q}) = 0 \), and \(p^*_{j,k,t} = \frac{p^*_{j,k,t} - P}{P} \) is such that \(\Pi_1(P^*_{j,k,t}, P_{j,-k,t}, \phi Q_t) = 0, \)
meaning that
\[p_{j,k,t}^* \partial^2 \Pi(P, P, \phi Q) \partial P^2 j,k,t + \sum_{l \neq k} p_{j,l,t} \partial^2 \Pi(P, P, \phi Q) \partial P \partial P_{j,l,t} + w_l \phi Q \partial^2 \Pi(P, P, \phi Q) \partial P_{j,k,t} \partial W_t = 0. \]

Plug this into the above approximation to get \(L(P_{j,k,t}, P_{j,-k,t}, W_t) = -\frac{\epsilon^2}{2} \Pi_1 (p_{j,k,t} - p_{j,k,t}^*)^2 \). Therefore, the approximation gives
\[
L[(P_{j,k,t}, P_{j,-k,t}, Q_t, W_t)]_{t=0} \approx -\frac{1}{2} \Pi_1 Q \sum_{t=0}^{\infty} \beta^t (p_{j,k,t} - p_{j,k,t}^*)^2,
\]
which implies that up to this second order approximation the profit maximization of the firm is equivalent to \(\min_{(p_{j,k,t}; S_{j,k}^{-1})} \mathbb{E} [\sum_{t=0}^{\infty} \beta^t (p_{j,k,t} - p_{j,k,t}^*)^2] \).

General Form of \(\alpha \).

To derive the expression for \(p_{j,k,t}^* \), recall that \(P_{j,k,t}^* \) is such that \(\Pi_1 (P_{j,k,t}^*; P_{j,-k,t}; W_t) = 0. \) Considering the specific form of the profit function this gives \(p_{j,k,t}^* = \frac{\epsilon D(P_{j,k,t}^*, P_{j,-k,t})}{\epsilon D(P_{j,k,t}, P_{j,-k,t})} \) where \(\epsilon D(P_{j,k,t}, P_{j,-k,t}) \equiv -\partial^2 D(P_{j,k,t}, P_{j,-k,t}) \partial P_{j,k,t} \partial P_{j,-k,t} \). Define the super-elasticity of demand for a firm as \(\epsilon^\alpha_D(P_{j,k,t}, P_{j,-k,t}) \equiv \frac{\epsilon D(P_{j,k,t}^*, P_{j,-k,t})}{\epsilon D(P_{j,k,t}, P_{j,-k,t})} \). Since \(D(., .) \) is homogeneous of degree -1, then \(\epsilon D(., .) \) and \(\epsilon^\alpha_D(., .) \) are both homogeneous of degree zero. For ease of notation let \(\epsilon_D \equiv \epsilon D(1, 1) \) and \(\epsilon^\alpha_D \equiv \epsilon^\alpha D(1, 1) \). Now, recall from the previous section that \(p_{j,k,t}^* \) is derived by a first order log-linearization of this equation, which implies \(p_{j,k,t}^* = (1 - \alpha) q_t + \alpha \frac{1}{K-1} \sum_{l \neq k} p_{j,l,t} \), where
\[
\alpha \equiv \frac{\epsilon^\alpha_D}{\epsilon_D + \epsilon^\alpha_D - 1}. \tag{12}
\]

Notice that \(\alpha \in [0, 1) \) as long as \(\epsilon^\alpha_D \geq 0 \) which happens if and only if the firm’s elasticity of demand is increasing in their own-price.

Derivation of Demand Given Elasticities.

I assumed that every firm’s own-price elasticity has the form
\[
\epsilon(P_{j,k,t}, P_{j,-k,t}) \equiv -\frac{D_1(P_{j,k,t}, P_{j,-k,t})}{D(P_{j,k,t}, P_{j,-k,t})} P_{j,k,t} = \eta - (\eta - 1)K^\xi \left(\frac{P_{j,k,t}^{1-\eta}}{\sum_{k \in K} P_{j,k,t}^{1-\eta}} \right)^{1+\xi}.
\]
A particular solution to this partial differential equation is
\[
\log(D(P_{j,k,t}, P_{j,-k,t})) = \log\left(\frac{P_{j,k,t}^{-\eta}}{\sum_{l \neq k} P_{j,l,t}^{-\eta}} \right) - K^\xi \left(\frac{P_{j,k,t}^{1-\eta}}{\sum_{l \neq k} P_{j,l,t}^{1-\eta}} \right)^{1+\xi} 2 F_1(1 + \xi, 1 + \xi; 2 + \xi; \frac{P_{j,k,t}^{1-\eta}}{\sum_{l \neq k} P_{j,l,t}^{1-\eta}}). \]
where \(2F_1(\cdot; \cdot; \cdot)\) is the hypergeometric function. This is also the particular solution to the above PDE that coincides with the CES demand when \(\xi = 0\). To see this, we use the identity \(2F_1(1,1;2; x) = \frac{\log(1-x)}{x}\). Therefore, when \(\xi = 0\), we have \(\log(D(P_{j,k,t}, P_{j,-k,t})) = \log(\frac{P_{j,k,t}^{\eta_{j,k,t}}}{\sum_{k\in K} P_{j,k,t}^{\eta_{j,k,t}}})\). Given the solution to the PDE we can define the system of equations,
\[
(C_{j,k,t})_{k\in K} = J^{-1}Q_t D(P_{j,k,t})_{k\in K},
\]
and the inverse of this function gives us a system of first order partial differential equations in terms of the function \(\Phi(.)\) as shown in derivations of household’s utility function.

B.3 Strategic Complementarity under Kimball Demand

In the main text of the paper, I consider a generalization of the elasticities under CES aggregator and derive the strategic complementarities under this generalization. An alternative approach in the literature is using Kimball aggregator, which is also a generalization of the CES aggregator. In this section, I derive the demand functions of firms given this aggregator and show that the strategic complementarity implied by these demand functions cannot satisfy all of the following properties simultaneously: (1) there is weak strategic complementarity and show that the strategic complementarity implied by these demand functions cannot satisfy all of the following properties simultaneously: (1) there is weak strategic complementarity in pricing \((0 \leq \alpha < 1)\), (2) there is substantial strategic complementarity in the data \((\alpha = 0.8)\) and (3) strategic complementarity is decreasing with the number of firms within industries \((\frac{\partial}{\partial K} \leq 0)\).

The Kimball aggregator assumes that the function \(\Phi(C_{j,1,t}, \ldots, C_{j,K,t})\) is implicitly defined by
\[
1 = K^{-1} \sum_{k \in K} f\left(\frac{KC_{j,k,t}}{\Phi(C_{j,1,t}, \ldots, C_{j,K,t})}\right),
\]
where \(f(.)\) is at least thrice differentiable, and \(f(1) = 1\) (so that \(\Phi(1, \ldots, 1) = K\)). Observe that this coincides with the CES aggregator when \(f(x) = x^{\frac{\alpha}{\alpha-1}}\). To derive the demand functions, recall that the first order conditions of the household’s problem are
\[
P_{j,k,t} = J^{-1}Q_t \sum_{l \in K} \frac{\partial}{\partial C_{j,l,t}} C_{j,l,t}, \forall j, k \text{where } C_{j,t} = \Phi(C_{j,1,t}, \ldots, C_{j,K,t}).
\]
Implicit differentiation of Equation (13) gives
\[
P_{j,k,t} = J^{-1}Q_t \sum_{l \in K} \frac{\partial f'}{\partial C_{j,l,t}} \left(\frac{KC_{j,l,t}}{C_{j,t}}\right), \forall j, k.
\]
To invert these functions and get the demand for every firm in terms of their competitors’ prices, guess that there exists a function \(F : \mathbb{R}^K \rightarrow \mathbb{R}\) such that
\[
\sum_{l \in K} C_{j,l,t} f'(\frac{KC_{j,l,t}}{C_{j,t}}) = F(P_{j,1,t}, \ldots, P_{j,K,t}).
\]
I verify this guess by plugging in this guess to Equation (14), which implies the function \(F(.)\) is implicitly defined by
\[
1 = K^{-1} \sum_{k \in K} f\left(\frac{f^{-1}(P_{j,k,t}F(P_{j,1,t}, \ldots, P_{j,K,t}))}{KC_{j,k,t}}\right).
\]
Note that this is consistent with the guess and \(F(.)\) only depends on the vector of these prices. It is straightforward to show that \(F(.)\) is symmetric across its arguments and homogeneous of degree \(-1\).

\footnote{Symmetry is obvious to show. To see homogeneity, differentiate the implicit function that defines \(F(.)\) with respect to each of its arguments and sum up those equations to get that for any \(X = (x_1, \ldots, x_K) \in \mathbb{R}^K\), \(-F(X) = \sum_{k \in K} x_k \frac{\partial}{\partial x_k} F(X)\). Now, notice that for any \(a \in \mathbb{R}, X \in \mathbb{R}^K, \frac{\partial F(aX)}{\partial a} = 0\). Thus, for any \(X \in \mathbb{R}^K\),}

Now, given these derivations, we can derive the demand function of firm
Recall from Equation (12) that

$$\alpha$$

get $$(\alpha \text{ of demand for every firms around a symmetric point is } \text{of substitution between industry goods around a symmetric point. Moreover, the elasticity of demand for every firms around a symmetric point is } \eta - (\eta - 1)K^{-1} \text{ similar to the case of a CES aggregator. Also, define } \zeta(x) = \frac{\partial \log(\frac{\partial \log(f'(x))}{\partial \log(x)})}{\partial \log(x)} \text{ as the elasticity of the elasticity of } f'(x); \zeta(x) = \frac{f'''(x)}{f''(x)} x - \frac{f'(x)}{f'(x)} x + 1. \text{ For notational ease let } \zeta \equiv \zeta(1) \text{ and assume } \zeta \geq 0 (\zeta = 0 \text{ corresponds to the case of CES aggregator). These assumptions } \eta > 1 \text{ and } \zeta \geq 0 \text{ are sufficient for weak strategic complementarity, } \alpha \in [0, 1). \text{ While the usual approach in the literature is to assume } K \rightarrow \infty \text{ and look at super elasticities in this limit, a part of my main results revolve around the finiteness of the number of competitors and the fact that the degree of strategic complementarity is decreasing in } K. \text{ Therefore, I derive the degree of strategic complementarity for any finite } K. \text{ With some intense algebra we get } \alpha = \frac{\zeta(K-2)(1-\eta^{-1})^2}{\zeta(K-2)+(1-\eta^{-1})K} \in [0, 1). \text{ This imbeds the CES aggregator when } \zeta = 0, \text{ in which case } \alpha = (1 - \eta^{-1})K^{-1}. \text{ This generalization allows us to match a high degree of strategic complementarity by choosing a large } \zeta. \text{ However, this leads to a counterintuitive result where the degree of strategic complementarity decreases with the elasticity of substitution. It is straight forward to show}

$$\frac{\partial \alpha}{\partial K} \leq 0 \iff \zeta \leq \frac{(1 - \eta^{-1})^2}{1 + \eta^{-1}} \implies \alpha \leq \frac{1 - \eta^{-1}}{2},$$

Thus, the Kimball demand also fails to generate a degree of strategic complementarity as high as the average of 0.8 in the data, while keeping the properties $\alpha \in [0, 1)$ and $\frac{\partial \alpha}{\partial K} \leq 0$.

B.4 Proofs of Propositions for the Dynamic Model

Proof of Proposition 4.

Recall from Equation (12) that $\alpha = \frac{\varepsilon_D}{\varepsilon_D + \varepsilon_D^{-1}}$ where ε_D is a firm’s elasticity of demand and ε_D^α is its super-elasticity of demand in a symmetric point. Given the form of elasticities $\varepsilon_D(P_{j,k,t}, P_{j,-k,t}) = \eta - (\eta - 1)K^\xi \left(\frac{P_{j,k,t}^\eta}{\sum_{l \in K} P_{j,k,t}^\eta} \right)^{1+\xi}$, we have $\varepsilon_D = \eta - K^{-1}(\eta - 1)$. Moreover, $\varepsilon_D^\alpha = \frac{(\eta - 1)^2(1+\xi)(K-2)K^{-2}}{\eta - K^{-1}(\eta - 1)\xi(1-\eta^{-1})}$. Plug these into the derivation for α and we get $\alpha = \frac{(1+\xi)(1-\eta^{-1})}{K+\xi(1-\eta^{-1})}$. $aF(aX)$ is independent of a, and in particular $aF(aX) = F(X) \Rightarrow F(aX) = a^{-1}F(X)$.

59
Proof of Proposition 5.

This proof is an adaptation of the result in Lemma (7) for the dynamic case. Many arguments in the proof are similar and are omitted to avoid repetition. At a given time t, let $(S_{j,k}^{t-1})(j,k)_{j,K}$ denote the signals that all firms have received until time $t-1$, and are born with at time t. In particular, for any j,k, $S_{j,k}^{t-1} = (\ldots, S_{j,k,t-3}, S_{j,k,t-2}, S_{j,k,t-1})$, where $\forall \tau \geq 1$, $S_{j,k,t-\tau} \subset S_{j,k,t-\tau}$. This implies that (1) $S_{j,k,t-\tau}$ only contains information that were available at time $t-\tau$, and therefore are available at time t, and (2) $S_{j,k,t-\tau}$ is available for all other firms in the economy in case they find it desirable to learn about it.

Given this initial signal structure, pick a strategy profile for all firms at time t: $q_t = (S_{j,k,t} \in S^t, p_{j,k,t} : S_{j,k,t} \rightarrow \mathbb{R})_{j,K}$, where $S_{j,k,t} = (S_{j,k,t-1}, S_{j,k,t})$. First, similar to the static case, we can show that in any equilibrium strategy $p_{j,k,t}(S_{j,k})$ is linear in the vector $S_{j,k}^t$. This result follows with an argument similar to Lemma (3). Given this, let $p_{j,k,t}(S_{j,k}) = \sum_{\tau=0}^{\infty} \delta_{j,k,t} S_{j,k,t-\tau}$ denote the pricing strategy for any $(j,k) \in J \times K$. This is without loss of generality because the equilibrium has to be among such strategies. Notice that due to linearity and definition of S^t, $p_{j,k,t}(S_{j,k}^t) \in S^t$, $\forall (j,k) \in J \times K$. Now, pick a particular firm j,k and let $\varsigma_{-(j,k),t}$ denote the signals and pricing strategies that ς_t implies for all other firms in the economy except for j,k. Similar to Subsection A.4 let $\theta_{j,k,t}(\varsigma_{-(j,k),t}) \equiv (q_t, p_{j,t}(S_{j,t}^t))_{t \neq k, (p_{m,n,t}(S_{m,n}^t))_{(m \neq j, n \in K})}$ be the augmented vector of the fundamental, the prices of other firms in j,k’s industry, and the prices of all other firms in the economy. Now, define $w = (1 - \alpha, \alpha, \alpha, \alpha, \alpha, 0, 0, 0, 0, 0)$’s times. Since $\beta = 0$, firm j,k’s problem is

$$\min_{S_{j,k,t} \subset S^t} \text{var}(w \theta_{j,k,t}(\varsigma_{-(j,k),t}) | S_{j,k}^t)$$

s.t. $\mathcal{I}(S_{j,k,t}, \theta_{j,k,t}(\varsigma_{-(j,k),t}) | S_{j,k}^t-1) \leq \kappa$.

To show that a single signal solves this problem, suppose not, so that $S_{j,k,t}$ contains more than one signal. Then, we know that $p_{j,k,t}(S_{j,k}^t) = w^t \mathbb{E}[\theta_{j,k,t}(\varsigma_{-(j,k),t}) | S_{j,k}^t]$. Notice that I am assuming signals are such that these expectations exist. If not, then the problem of the firm is not well-defined as the objective does not have a finite value. To get around this issue, for now assume that the initial signal structure of the game is such that expectations and variances are finite. Since both $\theta_{j,k,t}(\varsigma_{-(j,k),t})$ and $S_{j,k}^t$ are Gaussian, $p_{j,k,t}(S_{j,k}^t) = \sum \delta_{j,k,t} S_{j,k,t-\tau}$ by Kalman filtering. Here for any $S_{j,k,t-\tau}$ that is not that singleton, let $\delta_{j,k,t}$ be a vector of the appropriate size that is implied by Kalman filtering. Therefore, by definition of S^t, $p_{j,k,t}(S_{j,k}^t) \in S_t$, meaning that there is a signal in S^t that directly tells firm j,k what their price would be under $S_{j,k}^t$ and $\varsigma_{-(j,k),t}$. Let $\hat{S}_{j,k}^t \equiv (S_{j,k}^{t-1}, p_{j,k}(S_{j,k}^t))$ and observe that by definition of $p_{j,k,t}(S_{j,k}^t)$, $\text{var}(w \theta_{j,k,t}(\varsigma_{-(j,k),t}) | S_{j,k}^t) = \text{var}(w \theta_{j,k,t}(\varsigma_{-(j,k),t}) | \hat{S}_{j,k}^t)$. Therefore, we have found a single signal that implies the same loss for firm j,k under $S_{j,k}^t$. Now, we just need to show that it is feasible, which is straightforward from data processing inequality: since $p_{j,k,t}(S_{j,k}^t)$ is a function $S_{j,k}^t$, we have

$$\mathcal{I}(p_{j,k,t}(S_{j,k}^t), \theta_{j,k,t}(\varsigma_{-(j,k),t}) | S_{j,k}^t-1) \leq \mathcal{I}(S_{j,k,t}, \theta_{j,k,t}(\varsigma_{-(j,k),t}) | S_{j,k}^t-1) \leq \kappa.$$
which concludes the proof for sufficiency of one signal. Now, given \(S_{j,k}^{t-1}\) and \(\theta_{j,k,t}(\cdot)\), let \(\Sigma_{j,k,t|t-1} \equiv \text{var}(\theta_{j,k,t}(\cdot)|S_{j,k}^{t-1})\). Without loss of generality assume \(\Sigma_{j,k,t|t-1}\) is invertible. If not, then there are elements in \(\theta_{j,k,t}(\cdot)\) that are colinear conditional on \(S_{j,k}^{t-1}\), in which case knowing about one completely reveal the other; this means we can reduce \(\theta_{j,k,t}(\cdot)\) to its orthogonal elements without limiting the signal choice of the agent. Now, for any non-zero singleton \(S_{j,k,t} \in \mathcal{S}^t\), it is straightforward to forward to show that \(\mathcal{I}(S_{j,k,t}, \theta_{j,k,t}(\cdot), S_{j,k}^{t-1}) = \frac{1}{2} \log(1 - z_t^\prime \Sigma_{j,k,t|t-1}^{-1} z_t)\), where \(z_t \equiv \frac{\text{cov}(S_{j,k,t}, \theta_{j,k,t}(\cdot), S_{j,k}^{t-1})}{\sqrt{\text{var}(S_{j,k,t|S_{j,k}^{t-1}})}}\). The capacity constraint of the agent becomes \(z_t^\prime \Sigma_{j,k,t|t-1}^{-1} z_t \leq \lambda \equiv 1 - 2^{-2\epsilon}\). Moreover, notice that the loss of the firm becomes

\[
\text{var}(w'\theta_{j,k,t}(\cdot), S_{j,k}^{t-1}, S_{j,k,t}) = w'\Sigma_{j,k,t|t-1} w - (w'z_t)^2.
\]

This means that the agent can directly choose \(z_t\) as long as there is a signal in \(\mathcal{S}^t\) that induces that covariance. I first characterize the \(z_t\) that solves this problem and then show that such a signal exists. Notice that minimizing the loss is equivalent to maximizing \((w'z_t)^2\). The firm’s problem is \(\max_{z_t} (w'z_t)^2 \text{ s.t. } \Sigma_{j,k,t|t-1}^{-1} z_t \leq \lambda\). By Cauchy-Schwarz inequality we know \((w'z_t)^2 \leq (w^\prime \Sigma_{j,k,t|t-1} w)(z_t^\prime \Sigma_{j,k,t|t-1}^{-1} z_t) \leq \lambda w^\prime \Sigma_{j,k,t|t-1} w\), where the second inequality follows from the capacity constraint. Observe that \(z_t^* = \sqrt{\frac{\lambda}{w^\prime \Sigma_{j,k,t|t-1} w}}\) achieves this upper-bar. The properties of the Cauchy-Schwarz inequality imply that this is the only vector that achieves this upper-bar. Hence, \(z_t^*\) is the unique solution to the firm’s problem.\(^{45}\)

Now, I just need to show that a signal exists in \(\mathcal{S}^t\) that implies this \(z_t^*\). To see this, let \(S_{j,k,t} = (1 - \alpha)q_t + \alpha \frac{1}{K-1} \sum_{l \neq k} p_{j,t,l}(S_{j,l}^t) + e_{j,k,t}\). From Kalman filtering

\[
\begin{align*}
\text{w}^\prime \mathbb{E}[\theta_{j,k,t}(\cdot)|S_{j,k}^t] &= \mathbb{E}[w'\theta_{j,k,t}(\cdot)|S_{j,k}^{t-1}] + \frac{w'\text{cov}(S_{j,k,t}, \theta_{j,k,t}(\cdot), S_{j,k}^{t-1})}{\text{var}(S_{j,k,t}|S_{j,k}^{t-1})}(S_{j,k,t} - \mathbb{E}[S_{j,k,t}|S_{j,k}^{t-1}])
\end{align*}
\]

Notice from the proof of Proposition 5 that \(\frac{w'\text{cov}(S_{j,k,t}, \theta_{j,k,t}(\cdot), S_{j,k}^{t-1})}{\text{var}(S_{j,k,t}|S_{j,k}^{t-1})} = \frac{\lambda}{w^\prime \Sigma_{j,k,t|t-1} w} \Sigma_{j,k,t|t-1} w = \lambda\). Thus, using \(p_{j,k,t}\) as shorthand for \(p_{j,k,t}(S_{j,k}^t)\), \(p_{j,k,t} = (1 - \lambda)\mathbb{E}[S_{j,k,t}|S_{j,k}^{t-1}] + \lambda S_{j,k,t}\). Finally, notice that \(p_{j,k,t|t-1} = \mathbb{E}[S_{j,k,t-1}|S_{j,k}^{t-1}]\). Subtract this from both sides of the above equation to get \(\pi_{j,k,t} \equiv p_{j,k,t} - p_{j,k,t-1} = (1 - \lambda)\mathbb{E}[\Delta S_{j,k,t}|S_{j,k}^{t-1}] + \lambda(S_{j,k,t} - p_{j,k,t-1})\), where \(\Delta S_{j,k,t} = S_{j,k,t} - S_{j,k,t-1}\). Subtract \(\pi_{j,k,t}\) from both sides and divide by \((1 - \lambda)\) to get \(\pi_{j,k,t} = \mathbb{E}[\Delta S_{j,k,t}|S_{j,k}^{t-1}] + \frac{\lambda}{1 - \lambda}(S_{j,k,t} - p_{j,k,t})\). Averaging this equation over all firms gives us the Phillips curve. To derive it, I take the average of every term separately and then sum them.

\(^{45}\)This solution can also be obtained by applying the Kuhn-Tucker conditions.
The last term is approximately zero because \(J \) is large and \(e_{j,k,t} \perp p_{m,l,t}, \forall m \neq j \), meaning that errors are orthogonal across industries regardless of coordination within them. Now, define \(p_t \equiv \frac{1}{JK} \sum_{(j,k) \in J \times K} p_{j,k,t} \) and recall that \(q_t = p_t + y_t \). Therefore, \(\frac{1}{JK} \sum_{(j,k) \in J \times K} (S_{j,k,t} - p_{j,k,t}) = (1 - \alpha) y_t \). Finally, define aggregate inflation as the average price change in the economy, \(\pi_t \equiv \frac{1}{JK} \sum_{(j,k) \in J \times K} \pi_{j,k,t} \). Plugging these into the expression above we get

\[
\pi_t = (1 - \alpha) \frac{\mathbb{E}^{j,k}_{t-1}[\Delta q_t]}{JK} + \alpha \frac{\mathbb{E}^{j,k}_{t-1}[\pi_{j,-k,t}]}{JK} + (1 - \alpha) \frac{\lambda}{1 - \lambda} y_t.
\]

Finally, notice that \(\frac{\lambda}{1 - \lambda} = \frac{1 - 2 \kappa^2}{2 - 2 \kappa} = 2^\kappa - 1 \).

B.5 The Symmetric Stationary Equilibrium and Solution Method.

To characterize the equilibrium, I will use decomposition of firms’ prices to their correlated parts with the fundamental shocks and mistakes as defined in the main text. I start with the fundamental \(q_t \) itself. Notice that since \(q_t \) has a unit root and is Gaussian, it can be decomposed to its random walk components: \(q_t = \sum_{n=0}^{\infty} \psi^n_q u_{t-n} \), where \(u_t = \sum_{\tau=0}^{\infty} u_{t-n-\tau} \), and \((\psi^n_q)_{n=0}^{\infty} \) is a summable sequence as \(\Delta q_t \) is stationary and \(\Delta q_t = \sum_{n=0}^{\infty} \psi^n_q u_{t-n} \). Following Proposition 5 we know that given an initial signal structure for the game \((S_{j,k}^{-1})_{(j,k) \in J \times K}\), the equilibrium signals and pricing strategies are

\[
S_{j,k,t} = (1 - \alpha) q_t + \frac{1}{K-1} \sum_{l \neq k} p_{j,k,t}(S_{j,k}^t) + e_{j,k,t},
\]

\[
p_{j,k,t}(S_{j,k}^t) = \mathbb{E}[(1 - \alpha) q_t + \frac{1}{K-1} \sum_{l \neq k} p_{j,l,t}(S_{j,l}^t)|S_{j,k}^t]
= \sum_{\tau=0}^{\infty} \delta_{j,k,t} S_{j,k,t-\tau}, \forall (j,k) \in J \times K, t \forall t \geq 0.
\]

To characterize the equilibrium, I do a similar decomposition analogous to the one in the static model. Given the pricing strategies of firms at time \(t \), decompose their price to its correlated parts with the fundamental and parts that are orthogonal to it over time.
\(p_{j,k,t}(S_{j,k}^t) = \sum_{n=0}^{\infty}(a^n_{j,k,t}\tilde{u}_{t-n} + b^n_{j,k,t}v_{j,k,t-n}) \). Here, \(\sum_{n=0}^{\infty} b^n_{j,k,t}v_{j,k,t-n} \) is the part of \(j,k \)'s price at time \(t \) that is orthogonal to all these random walk components (mistake of firm \(j,k \) at time \(t \)). Moreover, \(v_{j,k,t-n} \) is the innovation to \(j,k \)'s price at time \(t \) that was drawn at time \(t-n \). In other words, I have also decomposed the mistake of the firm over time. This decomposition is necessary because other firms follow all these mistakes, but they can only do so after it was drawn at a certain point in time, in the sense that no firm can pay attention to future mistakes of their competitors as they have not been made yet. Before proceeding with characterization, I define the stationary symmetric equilibrium.

Definition 5. Given an initial information structure \((S_{j,k}^{-1})_{(j,k)\in J \times K}\), suppose a strategy profile \((S_{j,k,t} \in S^t, p_{j,k,t} : S_{j,k}^t \to \mathbb{R})_{k \in K, t \geq 0}\) is an equilibrium for the game. We call this a symmetric steady state equilibrium if the pricing strategies of firms is independent of time, \(t \geq 0 \), and identity, \(k \in K \). Formally, \(\exists \{(a^n)_{n=0}^{\infty}, (b^n)_{n=0}^{\infty}\} \), such that \(\forall t \geq 0, \forall (j,k) \in J \times K \),

\[
p_{j,k,t} = \sum_{n=0}^{\infty}(a^n_{j,k,t}\tilde{u}_{t-n} + b^n_{j,k,t}v_{j,k,t-n}).
\]

To characterize the equilibrium, notice that we not only need to find the sequences \((a^n, b^n)_{n=0}^{\infty}\), but also the joint distribution of \(v_{j,k,t-n} \)'s across the industries. To see this, take firm \(j,k \) and suppose all other firms are setting their prices according to \(p_{j,k,t} = \sum_{n=0}^{\infty}(a^n_{j,k,t}\tilde{u}_{t-n} + b^n_{j,k,t}v_{j,k,t-n}) \). Then, firm \(j,k \)'s optimal signals are

\[
S_{j,k,t} = \sum_{n=0}^{\infty}\left[(1-\alpha)\psi^n_q + \alpha a^n_{j,k,t}\tilde{u}_{t-n} + \alpha b^n_{j,k,t}\frac{1}{K-1}\sum_{l\neq k} v_{j,l,t-n} + e_{j,k,t}\right],
\]

where by properties of the equilibrium \(e_{j,k,t} \) is the rational inattention error and is orthogonal to \(\tilde{u}_{t-n} \) and \(v_{j,l,t-n} \), \(\forall n \geq 0, \forall l \neq k \). Using the joint distributions of errors \((v_{j,k,t-n})_{k \in K}\), by Kalman filtering, the firm would choose to set their price according to

\[
p_{j,k,t} = \sum_{n=0}^{\infty} \delta^n S_{j,k,t-n} = \sum_{n=0}^{\infty}(\tilde{a}_n\tilde{u}_{t-n} + \tilde{b}_n\frac{1}{K-1}\sum_{l\neq k} v_{j,l,t-n} + \tilde{c}_n e_{j,k,t-n})
\]

for some sequences \((\tilde{a}_n, \tilde{b}_n, \tilde{c}_n)\). But in the equilibrium, \(p_{j,k,t} = \sum_{n=0}^{\infty}(a^n_{j,k,t}\tilde{u}_{t-n} + b^n_{j,k,t}v_{j,k,t-n}) \). This implies, \(a^n = \tilde{a}_n, b^n v_{j,k,t-n} = \tilde{b}_n \frac{1}{K-1}\sum_{l\neq k} v_{j,l,t-n} + \tilde{c}_n e_{j,k,t-n}, \) where \(e_{j,k,t-n} \perp v_{j,l,t-n}, \forall l \neq k \). Using the second equation we can characterize the joint distribution of \((v_{j,k,t-n})_{k \in K}, \forall n \geq 0, \forall l \neq k \). This joint distribution is itself a fixed point and should be consistent with the Kalman filtering behavior of the firm that gave us \((\tilde{a}_n, \tilde{b}_n, \tilde{c}_n)_{n=0}^{\infty}\) in the first place. Finally, notice that underneath all these expressions we assume that these processes are stationary meaning that the tails of all these sequences should go to zero. Otherwise, the problems of the firms are not well-defined and do not converge. I verify this computationally, by truncating all these sequences such that \(\forall n \geq T \in \mathbb{N}, \) \(a^n = b^n = 0 \) where \(T \) is large, solving the problem computationally, and checking whether the sequences go to zero up to a computational tolerance before reaching \(T \). In my code I set \(T = 100 \). The economic interpretation for this truncation is that all real effects of monetary policy should disappear within 100 quarters. Such truncations are the standard approach in the literature for solving dynamic imperfect information models.

The following algorithm illustrates my method for solving the problem.
Algorithm 1. Characterizing a symmetric stationary equilibrium:

1. Start with an initial guess for \((a^n, b^n)_{n=0}^{T-1}\), and let for a representative firm \(j, k\), \(S_{j,k,t} = \sum_{n=0}^{T-1} \left[((1 - \alpha)\psi_q^n + \alpha a^n)\hat{u}_{t-n} + \alpha b^n \frac{1}{K-1} \sum_{l \neq k} v_{j,l,t-n} + e_{j,k,t} \right]\).

2. Using Kalman filtering, given the set of signals implied by previous step, form the best pricing response of a firm and truncate it. Formally, find coefficients \((\tilde{a}_n, \tilde{b}_n, \tilde{c}_n)_{n=0}^{T-1}\) such that \(p_{j,k,t} \approx \sum_{n=0}^{T-1} (\tilde{a}_n \hat{u}_{t-n} + \tilde{b}_n \frac{1}{K-1} \sum_{l \neq k} v_{j,l,t-n} + \tilde{c}_n e_{k,t-n})\).

3. \(\forall n \in \{0, \ldots, T-1\}\), update \(a^n = \tilde{a}^n\), and \(b^n\) such that \(b^n v_{k,t-n} = \tilde{b}^n \frac{1}{K-1} \sum_{l \neq k} v_{j,l,t-n} + \tilde{c}_n e_{k,t-n}\), using \(e_{k,t} \perp v_{-k,t}\), and the symmetry of the distribution of \((v_{j,k,t})_{k \in K}\).

4. Iterate until convergence of the sequence \((a^n, b^n)_{n=0}^{T-1}\).